How can I train a convolutional neural network for both classification and regression?
4 ビュー (過去 30 日間)
古いコメントを表示
I would like to use the same convolutional neural network to classify and perform regression on images. In other words, I would like to have shared input and hidden layers, but then branch off into a regression output layer and a classification output layer. How can I do this?
Part of this problem is that I have a lot of float-valued images stored as .mat files, so I would like to use their file names instead of storing all of my data in memory. Is it possible to use an image datastore with 2 labels for each image, or something like it?
As an example, I would like to train a convolutional neural network to classify digits and determine their rotation. MathWorks already has examples for the classification task and for the regression task. I would like to couple the two problems.
0 件のコメント
回答 (1 件)
KH TOHIDUL ISLAM
2020 年 6 月 6 日
HI,
If you have not found any solution for this, now you can have one! Please visit the following link!
Regards,
ISLAM
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!