Subscripted assignment dimension mismatch. Error in Untitled4 (line 80) ffmin(ite,run)=fmin; % storing best fitness

1 回表示 (過去 30 日間)
tahseen alshmary
tahseen alshmary 2018 年 11 月 27 日
コメント済み: tahseen alshmary 2018 年 11 月 28 日
Dear sir
i have this error
how can i solve it
((Subscripted assignment dimension mismatch))
Error in Untitled4 (line 80)
ffmin(ite,run)=fmin; % storing best fitness
the code is :-
%---------------------------------------------------------------------------------------------------------------------------------start
tic
clc
clear all
close all
rng default
LB=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05]; % lower bounds of variables
UB=[1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1]; % upper bounds of variables
% pso parameters values
m=14; % number of variables
n=800; % population size
wmax=0.9; % inertia weight
wmin=0.4; % inertia weight
c1=1; % acceleration factor
c2=0.2; % acceleration factor
% pso main program----------------------------------------------------start
maxite=10000; % set maximum number of iteration
maxrun=10; % set maximum number of runs need to be
for run=1:maxrun
run
% pso initialization----------------------------------------------start
for i=1:n
for j=1:m
x0(i,j)=round(LB(j)+rand()*(UB(j)-LB(j)));
end
end
x=x0; % initial population
v=0.1*x0; % initial velocity
f0=cell(1,n); %preallocation
for i=1:n
f0{i}=ofun(x0(i,:));
end
[fmin0,index0]=min(f0{i});
pbest=x0; % initial pbest
gbest=x0(index0,:); % initial gbest
% pso initialization-----------------------------------------------end
% pso algorithm---------------------------------------------------start
ite=1;
tolerance=1;
while ite<=maxite && tolerance>1e-12
w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight
% pso velocity updates
for i=1:n
for j=1:m
v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))...
+c2*rand()*(gbest(1,j)-x(i,j));
end
end
% pso position update
for i=1:n
for j=1:m
x(i,j)=x(i,j)+v(i,j);
end
end
% handling boundary violations
for i=1:n
for j=1:m
if x(i,j)<LB(j)
x(i,j)=LB(j);
elseif x(i,j)>UB(j)
x(i,j)=UB(j);
end
end
end
% evaluating fitness
f=cell(1,50); %preallocation
for i=1:n
f{i}=ofun(x(i,:));
end
% updating pbest and fitness
for i=1:n
if f{i}<f0{i}
pbest(i,:)=x(i,:);
f0{i}=f{i};
end
end
[fmin,index]=min(f0{i});
% finding out the best particle
ffmin(ite,run)=fmin; % storing best fitness
ffite(run)=ite; % storing iteration count
% updating gbest and best fitness
if fmin<fmin0
gbest=pbest(index,:);
fmin0=fmin;
end
% calculating tolerance
if ite>100;
tolerance=abs(ffmin(ite-100,run)-fmin0);
end
% displaying iterative results
if ite==1
fprintf('Iteration Best particle Objective fun\n');
end
fprintf('%8g %8g %8.4f\n',ite,index,fmin0);
ite=ite+1;
end
% pso algorithm---------------------------------------------------end
fvalue=2.633*x(1)+2.992*x(2)+3.134*x(3)+3.678*x(4)+3.620*x(5)+2.948*x(6)+1.607*x(7)+2.952*x(8)+3.348*x(9)+3.680*x(10)+3.774*x(11)+2.995*x(12)+3.237*x(13)+1.608*x(14);
fff(run)=fvalue
rgbest(run,:)=gbest;
fprintf('--------------------------------------\n');
end
% pso main program------------------------------------------------------end
fprintf('\n\n');
fprintf('*********************************************************\n');
fprintf('Final Results-----------------------------\n');
[bestfun,bestrun]=min(fff)
best_variables=rgbest(bestrun,:)
fprintf('*********************************************************\n');
toc
% PSO convergence characteristic
plot(ffmin(1:ffite(bestrun),bestrun),'-k');
xlabel('Iteration');
ylabel('Fitness function value');
title('PSO convergence characteristic')

回答 (1 件)

Geoff Hayes
Geoff Hayes 2018 年 11 月 27 日
tahseen - the problem with
ffmin(ite,run)=fmin;
might be because fmin is not a scalar but an array. There could be one or more elements with the same minimum value when calling
[fmin,index]=min(f0{i});
I think what you want to do is either check to see what the dimensions are for fmin (and then act accordingly) or just use the first element always
ffmin(ite,run)=fmin(1);
  7 件のコメント
tahseen alshmary
tahseen alshmary 2018 年 11 月 28 日
okay thank you so much
i will try

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOptimization についてさらに検索

製品


リリース

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by