eigenvalues and eigenvector manual calculation

5 ビュー (過去 30 日間)
muhammad iqbal habibie
muhammad iqbal habibie 2018 年 11 月 19 日
コメント済み: Manoj Samal 2020 年 12 月 3 日
I have a matrix 2x2, for example A= [ 0.064911 3.276493; 3.276493 311.2073]. I would like to calculate the eigenvalues and eigenvectors. I have calculated the eigenvalues by manual and match it with matlab is match. the manual of eigenvalues :
eigenvalues were calculated by |A- λ * I|=0
so I received the eigenvalues (0.0304;311.2418). Now I am trying to calculated the eigenvectors that I found the way like this
B= eig(A) ; this is calculating the eigenvalues
(v,d)=eig(A)
I got v= (-0.9999 0.0105; 0.0105 0.9999) and d = ( 0.0304 0 ; 0 311.2418).
I would like to ask how to calculate manual of matrix v? Hope someone can help. Thank you.
  1 件のコメント
Manoj Samal
Manoj Samal 2020 年 12 月 3 日
By using (v,d)=eig(A) gives v= normalised eigen vector(not eigen vector) and d=eigen values
N11=1/sqrt(1^2+3^2+1^2)=1/sqrt11
N21=3/ sqrt(3^2+2^2+1^2)=1/sqrt14 and so on....

サインインしてコメントする。

採用された回答

Torsten
Torsten 2018 年 11 月 19 日
編集済み: Torsten 2018 年 11 月 19 日
By solving
(A-lambda1*I)*v1 = 0
and
(A-lambda2*I)*v2 = 0
You could use
v1 = null(A-lambda1*I)
and
v2 = null(A-lambda2*I)
to achieve this.
Best wishes
Torsten.
  7 件のコメント
muhammad iqbal habibie
muhammad iqbal habibie 2018 年 11 月 19 日
I try manual it is hard though
A- λ * I
so
[0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 311.2418]
= [0.034511 3.276493; 3.276493 -0.0345]
how must I suppose to be v = (-0.9999 0.0105; 0.0105 0.9999)
any suggestion for manual calculation?
Torsten
Torsten 2018 年 11 月 19 日
([0.064911 3.276493; 3.276493 311.2073] - [0.0304 0; 0 0.0304])*[v11; v21]=[0;0]
Solve for v1=[v11;v21] and normalize the vector to get the first column of v.
([0.064911 3.276493; 3.276493 311.2073] - [311.2418 0; 0 311.2418])*[v12;v22]=[0;0]
Solve for v2=[v12;v22] and normalize the vector to get the second column of v.

サインインしてコメントする。

その他の回答 (1 件)

Bruno Luong
Bruno Luong 2018 年 11 月 19 日
No cheating, this applies for 2x2 only
A= [ 0.064911 3.276493;
3.276493 311.2073];
lambda=eig(A); % you should do it by solving det(A-lambda I)=0
V = ones(2);
for k=1:2
B = A-lambda(k)*eye(size(A));
% select pivot column
[~,j] = max(sum(B.^2,1));
othercolumn = 3-j;
V(j,k) = -B(:,j)\B(:,othercolumn);
end
% Optional: Make eigenvectors l2 norm = 1
V = V ./ sqrt(sum(V.^2,1));
disp(V)
  2 件のコメント
muhammad iqbal habibie
muhammad iqbal habibie 2018 年 11 月 20 日
Is it possible from
A= [ 0.064911 3.276493;
3.276493 311.2073];
to v = (-0.9999 0.0105; 0.0105 0.9999) with eigenvalues (0.0304;311.2418) using excel?
Torsten
Torsten 2018 年 11 月 21 日
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&ved=2ahUKEwjF8uef_-TeAhUJ3qQKHZB3BSsQFjAIegQIBxAC&url=http%3A%2F%2Fwww-2.rotman.utoronto.ca%2F~hull%2Fsoftware%2FEigenvalue%26vector.xls&usg=AOvVaw2og1xfxU96ox_lDmx3k6GB

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by