How to use integral2 when the integrand is a array?

2 ビュー (過去 30 日間)
Henan Fang
Henan Fang 2018 年 11 月 2 日
コメント済み: Henan Fang 2018 年 11 月 2 日
(x,y) is a generated integrand as the following codes. d is a parameter in Tuu. I want to get a set of value of the integration "integral2(@Tuu,0,pi/2,0,pi/4)" with different values of d. And thus I set d=1e-9:1e-10:3e-9 as in the codes. However the codes "integral2(@Tuu,0,pi/2,0,pi/4)" gives the error "insufficient number of inputs". Why? How to solve this problem? Many thanks!
The codes of Tuu(x,y) are as following:
function U=Tuu(x,y)
d=1e-9:1e-10:3e-9;
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
  1 件のコメント
Walter Roberson
Walter Roberson 2018 年 11 月 2 日
>> integral2(@Tuu,0,pi/2,0,pi/4)
Matrix dimensions must agree.
Error in Tuu (line 17)
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));

サインインしてコメントする。

採用された回答

Walter Roberson
Walter Roberson 2018 年 11 月 2 日
d=1e-9:1e-10:3e-9;
output = arrayfun(@(D) integral2(@(x,y) Tuu(x, y, D), 0,pi/2,0,pi/4,'reltol', 2e-4), d);
function U=Tuu(x, y, d)
mu=8;
delta=10;
vh=16;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.116e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
ku=kc.*sqrt(mu+delta);
kd=kc.*sqrt(mu-delta);
puu1=sqrt(ku.^2-ku.^2.*sin(x).^2+kc.^2.*vh);
puu2=sqrt(ku.^2-ku.^2.*sin(x).^2-kc.^2.*vh);
quu1=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
quu2=sqrt(ku.^2-(Kh-ku.*sin(x).*cos(y)).^2-ku.^2.*sin(x).^2.*sin(y).^2-kc.^2.*vh);
U=1/4.*ku.*sin(x).*(real(puu1).*exp(-2.*imag(puu1).*d)+real(puu2).*exp(-2.*imag(puu2).*d)+real(quu1).*exp(-2.*imag(quu1).*d)+real(quu2).*exp(-2.*imag(quu2).*d)+((real(puu1)+real(puu2)).*cos((real(puu1)-real(puu2)).*d)-(imag(puu1)-imag(puu2)).*sin((real(puu1)-real(puu2)).*d)).*exp(-(imag(puu1)+imag(puu2)).*d)-((real(quu1)+real(quu2)).*cos((real(quu1)-real(quu2)).*d)-(real(quu1)-imag(quu2)).*sin((real(quu1)-real(quu2)).*d)).*exp(-(imag(quu1)+imag(quu2)).*d));
end
If you try to use a smaller relative tolerance then you will get warning messages about using too many iterations. Your integrals are in the range of 2E20 so they do not converge well.
  1 件のコメント
Henan Fang
Henan Fang 2018 年 11 月 2 日
@Walter Roberson Thank you very much!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by