How can I do this L1 integral minimization?

1 回表示 (過去 30 日間)
Sijie Huang
Sijie Huang 2018 年 10 月 29 日
編集済み: Bruno Luong 2018 年 10 月 30 日
Greetings,
I have the following integral
where kdx = [pi/16, pi/2], and
I want to minimize the integral above and solving corresponding a_j. But I have no clue how do to it. Can anyone give me some hint?
Thanks.

回答 (2 件)

Bruno Luong
Bruno Luong 2018 年 10 月 29 日
編集済み: Bruno Luong 2018 年 10 月 29 日
The problem of linear L1 fit (your case); meaning
argmin_x | M*x - y |_l1
argmin sum abs(M*x - y)
can be reformulated and solved by linear programming (opt toolbox required) using slack variables trick as following
n = length(y);
Aeq = [M speye(n) -speye(n)];
Aeqpr=nonzeros(Aeq);
beq = y(:);
c = [zeros(1,size(M,2)) ones(1,2*n)];
LB = [-inf(1,size(M,2)) zeros(1,2*n)];
UB = [];
c = c(:);
LB = LB(:);
UB = UB(:);
x0 = zeros(size(c)); % guess vector
[sol, f, exitflag] = linprog(c,[],[], Aeq, beq, LB, UB, x0);
x = sol(1:size(M,2));
You just need to build M with sin(k*j*dx) and log(dx).
  8 件のコメント
Sijie Huang
Sijie Huang 2018 年 10 月 30 日
Oh, I see. Sorry I didn't understand your subscript _l1.
Bruno Luong
Bruno Luong 2018 年 10 月 30 日
編集済み: Bruno Luong 2018 年 10 月 30 日
I don't know how to type a curly "l" (lowercase L), which is the right notation.

サインインしてコメントする。


Matt J
Matt J 2018 年 10 月 30 日

カテゴリ

Help Center および File ExchangeSolver Outputs and Iterative Display についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by