Accelerate eig with GPUs

21 ビュー (過去 30 日間)
Niklas
Niklas 2018 年 10 月 16 日
コメント済み: Matt J 2019 年 7 月 16 日
Hi all, I need to diagonalize a lot of matrices. The problem is similar to:
A = rand(5000, 5000, 500); %this snipped is just a demo. It is real logic in the program
EVs = zeros(5000, 500);
for idx = 1:500
EVs(:, idx) = eig(A(:,:,idx));
end
This is fine on CPUs and easily scalable with parfor and MDCS. As eig is faster on GPUs I tried this
A = rand(5000, 5000, 500); %this snipped is just a demo. It is real logic in the program
EVs = zeros(5000, 500, 'gpuArray');
for idx = 1:500
B = gpuArray(A(:, :, idx));
EVs(:, idx) = eig(B);
end
EVs = gather(EVs);
This does not lead to a much better performance. Is there a way to get around the gpuArray statement in each loop? Some kind of pagefun with eig would be the solution I guess. (unfortunately, eig is not supported by pagefun)
Best wishes Niklas
  1 件のコメント
Matt J
Matt J 2019 年 7 月 16 日
Birk Andreas's comment moved here:
Please Mathworks, implement eig for use with pagefun as soon as possible!!!

サインインしてコメントする。

採用された回答

Matt J
Matt J 2018 年 10 月 16 日
編集済み: Matt J 2018 年 10 月 16 日
You need to build A directly on the GPU, for example,
EVs = zeros(5000, 500, 'gpuArray');
A=gpuArray.rand(5000,5000,500);
for idx = 1:500
B = A(:, :, idx);
EVs(:, idx) = eig(B);
end
EVs = gather(EVs);
For the case of your real A, you have to examine what operations you are currently using to build A on the host, and which of those operations would not also be available on the GPU.
  3 件のコメント
Niklas
Niklas 2018 年 10 月 16 日
編集済み: Niklas 2018 年 10 月 16 日
Using bigger matrices the speedup is higher.
Elapsed time is 1006.431223 seconds. <- CPU
Elapsed time is 295.168202 seconds. <- GPU
Unfortunately, nvidia-smi shows a low usage of the GPU. Maybe I will write a CUDA snipped to deal with it.
Matt J
Matt J 2018 年 10 月 16 日
Yeah, I can't see that there would be a lot of parallelism in eigenvalue computation.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGPU Computing についてさらに検索

製品


リリース

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by