How I can code this Nonuniform Series?
2 ビュー (過去 30 日間)
古いコメントを表示
mohamad hoseini
2018 年 10 月 10 日
編集済み: mohamad hoseini
2018 年 10 月 12 日
Hi all,
I have a problem in coding of series below:
from n=0 & P0(x)=1. I used handle function in a for loop but I couldn't to save the handle function at the end of each iteration. I appreciate you if you could help me on this problem.
Thanks
4 件のコメント
Torsten
2018 年 10 月 11 日
Do these recursively defined polynomials have a name ?
Then maybe googling this name together with "matlab" will give you hints on how to efficiently calculate them.
採用された回答
Dimitris Kalogiros
2018 年 10 月 11 日
編集済み: Dimitris Kalogiros
2018 年 10 月 11 日
Provided that you can use symbolic math toolbox, I suggest the following:
close all; clc; clearvars;
syms n x Pn(x)
% first N polynomials
N=5;
f{N}=0;
% definition for n=0
Pn(x)=1;
f{1}=Pn(x);
% calculation from n=1 up to n=N
for n=1:N
Pn(x)=x^n;
for k=1:n
Pn(x)=Pn(x)- ( int((x^n)*f{k},x,-1,1) / int(f{k}^2,x,-1,1) )* f{k} ;
end
%store next polynomial
f{n+1}=Pn(x);
end
%display all calculated polynomials
for k=0:N
fprintf(' for n = %d ', k);
disp(f{k+1})
end
If you run it , lets say , to calculate P1(x), P2(x),...,P5(x) , you'll get something like this:
The "tip" here is to use the cell array f{}, in order to store all Pn(x) polynomials.
2 件のコメント
Walter Roberson
2018 年 10 月 11 日
編集済み: Walter Roberson
2018 年 10 月 11 日
Alternatively you could phrase it as P{n+1}(x). Which is to say that you can use a cell array of function handles to solve the coding, without using symbolic toolbox.
This is a situation where I would want to analyze to see whether memoize() is appropriate.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!