function fzero with warning Imaginary parts of complex X and/or Y arguments ignored

4 ビュー (過去 30 日間)
Chao-Zhen Liu
Chao-Zhen Liu 2018 年 10 月 10 日
コメント済み: Chao-Zhen Liu 2018 年 10 月 10 日
Hi everyone,
I am now encountering a problem that is a little complicated, hope you can read the detail below patiently and give me some advice, thanks.
My problem:
I am do some statistical problem and I write some code like this,
clc; clear
tic
U = 14; L = 7; d = (U-L)/2;
T = ( 3*U+L )/(3+1);
Du = U-T; Dl = T - L; d_star = min(Du,Dl);
du = d/Du; dl = d/Dl;
alpha = 0.05;
aLe = 0.05;
n = 100;
i = 1;
for ksi_given = 0:0.2:3
if ksi_given <= 0
sigma = fzero(@(x) aLe - (x^2)*( (dl^2*ksi_given^2+1)/d_star^2 ), [0 0.5] ) ;
mu = ksi_given*sigma + T;
B = n*( (dl*ksi_given)^2 + 1 )/aLe;
C(i,1) = (dl*ksi_given)^2/(d_star/sigma)^2 + 1/(d_star/sigma)^2;
else
sigma = fzero(@(x) aLe - (x^2)*( (du^2*ksi_given^2+1)/d_star^2 ), [0 0.5] ) ;
mu = ksi_given*sigma + T;
B = n*( (du*ksi_given)^2 + 1 )/aLe;
C(i,1) = (du*ksi_given)^2/(d_star/sigma)^2 + 1/(d_star/sigma)^2;
end
fun = @(ca,y) chi2cdf( B.*ca-y, n-1).* ( 1./ (2.*sqrt(y)) ).* ( (dl^-1).*normpdf( (dl^-1).*sqrt(y) + sqrt(n*ksi_given) ) + (du^-1).*normpdf( (du^-1).*sqrt(y) - sqrt(n*ksi_given) ) );
fun2 = @(ca) alpha - integral(@(y) fun(ca,y),0.0001,B*ca);
ca(i,1) = fzero(@(ca) alpha - integral(@(y) fun(ca,y),0.0001,B*ca), aLe);
i = i + 1;
end
toc
and my solving result comparing the standard answer is below:
My question are:
1. Why does I get the acceptable result only when ksi_given equal to 0 and 1 even though under the same code?
2. Actually, for this for loop, ksi_given must start from -3 to 3, but when I try it, MATLAB returns the error message:
Error using fzero (line 328) Function value at starting guess must be finite and real.
I am curious, so I try another code to check the case that ksi_given is negative:
clc; clear
tic
U = 14; L = 7; d = (U-L)/2;
T = ( 3*U+L )/(3+1);
Du = U-T; Dl = T - L; d_star = min(Du,Dl);
du = d/Du; dl = d/Dl;
alpha = 0.05;
aLe = 0.05;
n = 100;
ksi_given = -3;
if ksi_given <= 0
sigma = fzero(@(x) aLe - (x^2)*( (dl^2*ksi_given^2+1)/d_star^2 ), [0 0.5] ) ;
mu = ksi_given*sigma + T;
B = n*( (dl*ksi_given)^2 + 1 )/aLe;
C = (dl*ksi_given)^2/(d_star/sigma)^2 + 1/(d_star/sigma)^2;
b = d_star/sigma;
else
sigma = fzero(@(x) aLe - (x^2)*( (du^2*ksi_given^2+1)/d_star^2 ), [0 0.5] ) ;
mu = ksi_given*sigma + T;
B = ( n*( (du*ksi_given)^2 + 1 ) )/aLe;
C = (du*ksi_given)^2/(d_star/sigma)^2 + 1/(d_star/sigma)^2;
b = d_star/sigma;
end
fun = @(ca,y) chi2cdf( B.*ca-y, n-1).* ( 1./ (2.*sqrt(y)) ).* ( (dl^-1).*normpdf( (dl^-1).*sqrt(y) + sqrt(n*ksi_given) ) + (du^-1).*normpdf( (du^-1).*sqrt(y) - sqrt(n*ksi_given) ) );
fun2 =@(ca) alpha - integral(@(y) fun(ca,y),0.0001,B*ca);
c = linspace(1e-4,0.1,100);
for i=1:numel(c)
fc(i) = fun2(c(i));
end
plot(c,fc)
ca = fzero(@(ca) alpha - integral(@(y) fun(ca,y),0,B*ca), aLe);
toc
when ksi_given = -0.1, the plot and error message are
Warning: Imaginary parts of complex X and/or Y arguments ignored Error using fzero (line 328) Function value at starting guess must be finite and real.
when ksi_given = -3, the plot and error message are
Warning: Imaginary parts of complex X and/or Y arguments ignored Warning: Reached the limit on the maximum number of intervals in use. Approximate bound on error is 1.8e+57. The integral may not exist, or it may be difficult to approximate numerically to the requested accuracy. > In integralCalc/iterateScalarValued (line 372) In integralCalc/vadapt (line 132) In integralCalc (line 75) In integral (line 88) In @(ca)alpha-integral(@(y)fun(ca,y),0,B*ca) In fzero (line 303) Error using fzero (line 328) Function value at starting guess must be finite and real.
For my problem, I hope someone can give me some advice about the question below:
1. When ksi_given is positive, why I can only get the correct result when ksi_given is 0 and 1?
2. When ksi_given is negative, why does MATLAB couldn't solve the equation? Because of starting value(I have try many values...)? or some mathematical mistake about the integration ?
Thanks!
  2 件のコメント
Torsten
Torsten 2018 年 10 月 10 日
編集済み: Torsten 2018 年 10 月 10 日
ad 2)
For ksi_given < 0, you evaluate "normpdf" at an imaginary number x which doesn't make sense. (Note that you take the square root of a negative number !)
Chao-Zhen Liu
Chao-Zhen Liu 2018 年 10 月 10 日
Hi Torsten,
Thanks! You are right! There is an mistake on the paper...
Sincerely thank you!

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeMATLAB についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by