How to find the sensitivity and specificity from the confusion matrix?

6 ビュー (過去 30 日間)
Win Sheng Liew
Win Sheng Liew 2018 年 9 月 28 日
コメント済み: Win Sheng Liew 2018 年 9 月 28 日
  2 件のコメント
madhan ravi
madhan ravi 2018 年 9 月 28 日
upload your code , it's hard to debug screenshots
Win Sheng Liew
Win Sheng Liew 2018 年 9 月 28 日
global net imageSize featureLayer classifier
f = waitbar(0,'Please wait...');
rootFolder = fullfile('c:\', 'Users', 'Ws Liew', 'Documents', 'MATLAB', 'Dataset'); categories = {'normal', 'abnormal'}; imds = imageDatastore(fullfile(rootFolder, categories), 'LabelSource','foldernames');
tb1 = countEachLabel(imds)
minSetCount = 0.6;
imds = splitEachLabel(imds, minSetCount, 'randomize');
normal = find(imds.Labels == 'normal', 1); abnormal = find(imds.Labels == 'abnormal', 1);
str = {'Select a CNN Architectures: '}; list = {'GoogLeNet','AlexNet','ResNet','VGG-16','VGG-19'}; [indx,tf] = listdlg('PromptString', str, 'ListSize', [200 130], 'SelectionMode', 'single', 'ListString', list);
waitbar(.25,f,'Loading Pre-trained Network');
if indx == 1 net = googlenet(); featureLayer = 'loss3-classifier';
elseif indx == 2 net = alexnet(); featureLayer = 'fc8';
elseif indx == 3 net = resnet50(); featureLayer = 'fc1000';
elseif indx == 4 net = vgg16(); featureLayer = 'fc8';
else indx == 5 net = vgg19(); featureLayer = 'fc8';
end
net.Layers
net.Layers(1)
net.Layers(end)
numel(net.Layers(end).ClassNames)
waitbar(.4,f,'Training and Testing Image Datasets');
[trainingSet, testSet] = splitEachLabel(imds, 0.3, 'randomize');
imageSize = net.Layers(1).InputSize; augmentedTrainingSet = augmentedImageDatastore(imageSize, trainingSet, 'ColorPreprocessing', 'gray2rgb'); augmentedTestSet = augmentedImageDatastore(imageSize, testSet, 'ColorPreprocessing', 'gray2rgb');
w1 = net.Layers(2).Weights;
w1 = mat2gray(w1); w1 = imresize(w1,5);
trainingFeatures = activations(net, augmentedTrainingSet, featureLayer, 'MiniBatchSize', 32, 'OutputAs', 'columns');
trainingLabels = trainingSet.Labels;
waitbar(.65,f,'SVM Classifier Training');
classifier = fitcecoc(trainingFeatures, trainingLabels, 'Learners', 'Linear', 'Coding', 'onevsall', 'ObservationsIn', 'columns');
testFeatures = activations(net, augmentedTestSet, featureLayer, 'MiniBatchSize', 32, 'OutputAs', 'columns');
predictedLabels = predict(classifier, testFeatures, 'ObservationsIn', 'columns');
testLabels = testSet.Labels;
confMat = confusionmat(testLabels, predictedLabels);
confMat = bsxfun(@rdivide,confMat,sum(confMat,2))

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeDimensionality Reduction and Feature Extraction についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by