How to find two layers to replace in googlenet?
8 ビュー (過去 30 日間)
古いコメントを表示
Hello,
I'm trying the deep learning using googlenet and I don't know how to solve the 'findLayersToReplace'.
I tried this code but it give 3 layers instead of 2 layers that need to find.
layers = net.Layers(end-2:end);
layers =
3x1 Layer array with layers:
1 'loss3-classifier' Fully Connected 1000 fully connected layer
2 'prob' Softmax softmax
3 'output' Classification Output crossentropyex with 'tench' and 999 other classes
I don't need to replace Softmax layer.
Please help me creating the function of findLayersToReplace.
Thank you very much
Hana Razak
2 件のコメント
mohammed alagele
2023 年 1 月 1 日
hello dear also me the replaceLayer is not work what i do pleas can you help me
回答 (6 件)
Johannes Bergstrom
2018 年 11 月 26 日
I presume you are looking at this example: https://www.mathworks.com/help/deeplearning/examples/train-deep-learning-network-to-classify-new-images.html
findLayersToReplace is a supporting function/helper function to the example. To access supporting functions of any MATLAB example, open the example by clicking the blue 'Try it in MATLAB' (or similar) button in the top-right of the examples page.
2 件のコメント
FEDERICO FURLAN
2019 年 9 月 4 日
Hi Johannes,
Why the softmax layer is not replaced in this example? In other descriptions and examples this layer is always replaced... What is better to do? Thanks
Chinmay Rane
2021 年 5 月 5 日
Hi the softmax layer is just an activation layer. hence it is not needed to be replaced until you plan to use some other activation. The Fully connected and the classification layer needs your total number of classes, hence we need to replace fc layer and final classification layer(this is set to default as it checks for incoming nodes). Hope it helps
houwang
2018 年 11 月 27 日
Thank you very much !!! Ihave solved this problems by this function
2 件のコメント
DEEPA
2023 年 4 月 16 日
TASK
Replace the last fully connected layer of the network with the new layer you just created. The layer that you need to replace is named "loss3-classifier".
0 件のコメント
Bhagyashri
2023 年 5 月 21 日
Replace the last fully connected layer of the network with the new layer you just created. The layer that you need to replace is named "loss3-classifier".
0 件のコメント
Vedantika
2023 年 7 月 14 日
TASK
Replace the last fully connected layer of the network with the new layer you just created. The layer that you need to replace is named "loss3-classifier".
0 件のコメント
venkata sai
2024 年 7 月 15 日
Replace the last fully connected layer of the network with the new layer you just created. The layer that you need to replace is called "loss3-classifier".
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!