Multi variable Simulated Annealing with different bounds
4 ビュー (過去 30 日間)
古いコメントを表示
Spyros Polychronopoulos
2018 年 9 月 12 日
編集済み: Spyros Polychronopoulos
2018 年 9 月 21 日
Hi there, I have this function that has two variables x and y
fun = @(x,y) x+y-5;
I would like to find the global minimum of this function using SA optimiser. Now the problem that I have here is that I want to use different boundary conditions for x and y like so
x0 = rand;
LBx = 0; % LBx - lower bound for x
UBx= 10; % UBx - upper bound for x
y0 = rand;
LBy = -2; % LB - lower bound for x
UBy= 3; % UB - upper bound for y
The line below is obviously not working but I am posting it as a reference to explain what I am trying to do
[x,y,fval]=simulannealbnd(fun,x0,LBx,UBx,y0,LBy,UBy); %simulated annealing
Thank you very much in advance for your help
0 件のコメント
採用された回答
Alan Weiss
2018 年 9 月 13 日
Global Optimization Toolbox solvers, like Optimization Toolbox™ solvers, require you to put all your variables into one vector. The same with the bounds. See Compute Objective Functions and Bound Constraints.
Alan Weiss
MATLAB mathematical toolbox documentation
その他の回答 (1 件)
参考
カテゴリ
Help Center および File Exchange で Simulated Annealing についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!