Multi variable Simulated Annealing with different bounds

4 ビュー (過去 30 日間)
Spyros Polychronopoulos
Spyros Polychronopoulos 2018 年 9 月 12 日
編集済み: Spyros Polychronopoulos 2018 年 9 月 21 日
Hi there, I have this function that has two variables x and y
fun = @(x,y) x+y-5;
I would like to find the global minimum of this function using SA optimiser. Now the problem that I have here is that I want to use different boundary conditions for x and y like so
x0 = rand;
LBx = 0; % LBx - lower bound for x
UBx= 10; % UBx - upper bound for x
y0 = rand;
LBy = -2; % LB - lower bound for x
UBy= 3; % UB - upper bound for y
The line below is obviously not working but I am posting it as a reference to explain what I am trying to do
[x,y,fval]=simulannealbnd(fun,x0,LBx,UBx,y0,LBy,UBy); %simulated annealing
Thank you very much in advance for your help

採用された回答

Alan Weiss
Alan Weiss 2018 年 9 月 13 日
Global Optimization Toolbox solvers, like Optimization Toolbox™ solvers, require you to put all your variables into one vector. The same with the bounds. See Compute Objective Functions and Bound Constraints.
Alan Weiss
MATLAB mathematical toolbox documentation
  1 件のコメント
Spyros Polychronopoulos
Spyros Polychronopoulos 2018 年 9 月 14 日
I thought that, that was the case. I would be a bit difficult to code that now but I will try. Thank you Alan!

サインインしてコメントする。

その他の回答 (1 件)

Spyros Polychronopoulos
Spyros Polychronopoulos 2018 年 9 月 21 日
編集済み: Spyros Polychronopoulos 2018 年 9 月 21 日
Would you maybe know a way to obtain a matrix with all the values x (for all the iterations) the optimizer tried? Thanks in advance

カテゴリ

Help Center および File ExchangeSimulated Annealing についてさらに検索

製品


リリース

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by