how to identify the cracks from the image

11 ビュー (過去 30 日間)
ASIM BISAYEE
ASIM BISAYEE 2018 年 8 月 24 日
編集済み: Preetham Manjunatha 2025 年 5 月 16 日
  3 件のコメント
ASIM BISAYEE
ASIM BISAYEE 2018 年 8 月 26 日
I do have coding in image processing but not to detect the cracks in a segment ways
ASIM BISAYEE
ASIM BISAYEE 2018 年 8 月 26 日
provide me the help if possible.

サインインしてコメントする。

回答 (2 件)

Image Analyst
Image Analyst 2018 年 8 月 26 日
Try something like a bottom hat filter, imbothat(), then threshold and use regionprops() to thrown out blobs that are vertical. If a slanted crack touches a vertical crack, then you'll have to split them apart with something like watershed.
  10 件のコメント
Image Analyst
Image Analyst 2018 年 8 月 27 日
編集済み: Image Analyst 2018 年 8 月 28 日
I understand. You're main goal is "trying to develop an algorithm" (programming) rather than material science. Like developing the algorithm is a main part of your Masters thesis or Ph.D. dissertation. So you don't want to buy, or have someone give you, the algorithm because you need to develop it yourself, for your degree. Good luck. Perhaps what I gave you might be a good start.
ASIM BISAYEE
ASIM BISAYEE 2018 年 8 月 29 日
Thanks for everything..

サインインしてコメントする。


Preetham Manjunatha
Preetham Manjunatha 2025 年 1 月 7 日
編集済み: Preetham Manjunatha 2025 年 5 月 16 日
The image looks quite intricate with regular structures like lines. As @Image Analyst mentioned morphological methods might help to mitigate the non-cracks entities. Here is the MATLAB Crack segmentation and Crack width, length and area estimation codes to calculate/estimate the crack area, width and length. Please try with the morphological crack detection method to get started with. Gradient-based crack segmentation methods can pick the lines heavily in comparision to the morohological approach. Lastly, the semantic segmentation and object detection metrics for the cracks can be found using Cracks binary class bounding box and segmentation metrics package.

カテゴリ

Help Center および File ExchangeImage Processing Toolbox についてさらに検索

製品


リリース

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by