Regarding Multi-label transfer learning with googlenet

1 回表示 (過去 30 日間)
Balakrishnan Rajan
Balakrishnan Rajan 2018 年 8 月 22 日
コメント済み: Tarily 2023 年 6 月 21 日
I have a dataset with pictures with presence of objects of different classes. I want to perform a multilabel classification, which means I need to classify the pictures into different classes with the picture belonging to more than one class at the same time. That is, for pictures with objects of type A and type B, the net should output both the labels A and B.
If I am designing a CNN for this from scratch, I will have a sigmoid activation at the last layer. The number of output neurons will be equal to the number of classes with the output of each neuron giving 1 if the picture belongs to the particular class or 0 if not. However, there seems to be no provision for adding a sigmoid function and the Image datastore cannot hold binary vectors as the label. How do I overcome this?
  1 件のコメント
SC P
SC P 2019 年 10 月 12 日
@Balakrishnan Rajan ,how you have resolved this problem? ( how you did this?:defining classes which are unique combination of the previous class occurences). Is there any code of it

サインインしてコメントする。

採用された回答

Shounak Mitra
Shounak Mitra 2018 年 8 月 24 日
We do not support sigmoid activation. You can use the softmax activation function. You don't need to define the neurons in the softmaxLayer. Define the no of neurons (= no of classes) you want in the fullyConnectedLayer. So, your network structure would be like:
inputLayer -- -- fullyConnectedLayer softmaxLayer ClassificationLayer
HTH Shounak
  3 件のコメント
o.cefet cefet
o.cefet cefet 2020 年 5 月 29 日
Hello all?
As the images do not have a single class, how can I build the ImageDataStore, because the images cannot be separated by folders, that is, I cannot endow "Labels" with "Folders".
The images are in the same folder and a CSV file destines them. Like this:
Image, Class A, Class B, Class C, Class D
00000001_000.png, 1,1,0,0
00000001_001.png, 1,1,0,1
00000001_002.png, 0,0,0,1
00000002_000.png, 0,0,0,0
00000003_000.png, 0,0,1, -1
00000003_001.png, 0, -1,0,1
00000003_002.png, 1,0,0,0
00000003_003.png, 0,0,0,1
00000003_004.png, 0,1,0,0
00000003_005.png, 0,0,1,0
00000003_006.png, 0,1,1,0
00000003_007.png, 1,0,0,1
00000004_000.png, 0,0,1,0
00000005_000.png, 0,1,0,0
00000005_001.png, -1, -1,1,0
00000005_002.png, 0.1, -1.0
00000005_003.png, 0,0,0,1
00000005_004.png, 0,0,1,0
00000005_005.png, 0,1,0,0
00000005_006.png, 0,0, -1,1
00000005_007.png, 0,1,0, -1
00000006_000.png, 0,0,0,1
00000007_000.png, 0,1,0,0
00000008_000.png, 0,0,1,0
00000008_001.png, 0,0,0,1
......
......
......
......
SC P
SC P 2020 年 7 月 7 日
@Kira, Have you found any solution of it? if yes please let me know. Thanks

サインインしてコメントする。

その他の回答 (3 件)

Antonio Quvera
Antonio Quvera 2019 年 5 月 21 日
編集済み: Antonio Quvera 2019 年 5 月 21 日
I'm also interested in this application (i.e. multi-label classification using CNN/LSTM). Any news? Does the latest deep learning toolbox resolve this issue?

cui,xingxing
cui,xingxing 2019 年 5 月 14 日
Can I define multiple softmaxLayer at the end of the network? Each softmaxLayer is independent of each other, and each layer is used to classify a label so that there can be multiple loss functions, shared by the previous convolutional layer? But how do you enter the network goals?
  1 件のコメント
Tarily
Tarily 2023 年 6 月 21 日
Do you have solven it? if yes please let me know. Thanks:)

サインインしてコメントする。


Greg Heath
Greg Heath 2018 年 12 月 22 日
Decades old solution:
Divide each output by the sum to obtain the relative probability of each class
Hope this helps.
Thank you for formally accepting my answer
Greg
  4 件のコメント
Greg Heath
Greg Heath 2019 年 1 月 29 日
To Kira:
My point was:
If you do not use softmax, the sum is not constrained to be 1 !
Greg
o.cefet cefet
o.cefet cefet 2020 年 5 月 29 日
Hello all?
As the images do not have a single class, how can I build the ImageDataStore, because the images cannot be separated by folders, that is, I cannot endow "Labels" with "Folders".
The images are in the same folder and a CSV file destines them. Like this:
Image, Class A, Class B, Class C, Class D
00000001_000.png, 1,1,0,0
00000001_001.png, 1,1,0,1
00000001_002.png, 0,0,0,1
00000002_000.png, 0,0,0,0
00000003_000.png, 0,0,1, -1
00000003_001.png, 0, -1,0,1
00000003_002.png, 1,0,0,0
00000003_003.png, 0,0,0,1
00000003_004.png, 0,1,0,0
00000003_005.png, 0,0,1,0
00000003_006.png, 0,1,1,0
00000003_007.png, 1,0,0,1
00000004_000.png, 0,0,1,0
00000005_000.png, 0,1,0,0
00000005_001.png, -1, -1,1,0
00000005_002.png, 0.1, -1.0
00000005_003.png, 0,0,0,1
00000005_004.png, 0,0,1,0
00000005_005.png, 0,1,0,0
00000005_006.png, 0,0, -1,1
00000005_007.png, 0,1,0, -1
00000006_000.png, 0,0,0,1
00000007_000.png, 0,1,0,0
00000008_000.png, 0,0,1,0
00000008_001.png, 0,0,0,1
......
......
......
......

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by