Matrix indexing of a 3D matrix, one by one each 3D layer?

1 回表示 (過去 30 日間)
JAI PRAKASH
JAI PRAKASH 2018 年 7 月 12 日
回答済み: Rik 2018 年 7 月 12 日
J = cat(3, magic(4), magic(4), magic(4)); % 3D matrix
maskIdx = J(:,:,1)>8;
%%I want to do something like below
J{:,:,1}(maskIdx) = ones(8,1);
J{:,:,2}(maskIdx) = 2*ones(8,1);
J{:,:,3}(maskIdx) = 3*ones(8,1);
Please focus on LHS only. How to apply same maskIdx on different layers. Note maskIdx created by the 1st layer which is 2D.
  2 件のコメント
Rik
Rik 2018 年 7 月 12 日
The only thing I can think of is using find and subs2ind to generalize this, but that feels very ineffective. So if nobody has a better idea and you can't implement this on your own, comment here and I'll post an answer with example code.
JAI PRAKASH
JAI PRAKASH 2018 年 7 月 12 日
編集済み: JAI PRAKASH 2018 年 7 月 12 日
i understood ur idea.
I am looking if, it can be done in a miraculous way!! (I mean most efficient way)
Because if suppose J is a very big(10000x10000x3), then maskIdx will be 3 times. That's why I want to avoid the repetition.

サインインしてコメントする。

採用された回答

Rik
Rik 2018 年 7 月 12 日
Logicals are 8 times smaller than doubles, so memory concerns shouldn't be an issue. If you can work with a big J, you can easily afford to replicate the mask. The code below does its thing in 3.4 seconds for a 1000000x100x3 J.
1e5 done in 0.0 seconds
1e6 done in 0.0 seconds
1e7 done in 0.3 seconds
1e8 done in 3.4 seconds
Name Size Bytes Class Attributes
J 1000000x100x3 2400000000 double
maskIdx 1000000x100x3 300000000 logical
code:
for k_base=5:8
k=10^(k_base-2);
clear J maskIdx n targetDim
J=rand(k,100,3);
maskIdx=J(:,:,1)>0.8;
n=sum(maskIdx(:));
A=ones(n,1);
B=2*A;
C=3*A;
tic
maskIdx(1,1,size(J,3))=false;%extend to 3D
targetDim=1;
J(circshift(maskIdx,targetDim-1,3))=A;
targetDim=2;
J(circshift(maskIdx,targetDim-1,3))=B;
targetDim=3;
J(circshift(maskIdx,targetDim-1,3))=C;
fprintf('1e%d done in %.1f seconds\n',log10(numel(J)/3),toc)
end

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeIntroduction to Installation and Licensing についてさらに検索

タグ

製品


リリース

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by