how to copy layers and connections from an existing neural network?
4 ビュー (過去 30 日間)
古いコメントを表示
just installed the latest version and find the support for deep learning is better and better. here, i have a question. I want to create a new network, but i do not want to write from scratch. take googlenet for example, I want to create a new network which can be a little like googlenet. but not all the same. maybe I need to refer some layers or structure. so how to copy layers and connections from an existing neural network?
0 件のコメント
回答 (1 件)
Von Duesenberg
2018 年 7 月 11 日
Something along the lines (I had an exemple withe Alexnet, but the basic principle should be identical; here, I just resize the input layers because I have gray, not RGB, images, and I have 45 classes):
net = alexnet;
layers = net.Layers;
layers(1) = imageInputLayer([227, 227,1]);
layers(2) = convolution2dLayer([11, 11], 96,'Padding',0, 'Stride', 4, 'BiasLearnRateFactor',2);
layers(23) = fullyConnectedLayer(45);
layers(24) = softmaxLayer();
layers(25) = classificationLayer();
参考
カテゴリ
Help Center および File Exchange で Deep Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!