how to plot confusionmat for this code?

2 ビュー (過去 30 日間)
susanta reang
susanta reang 2018 年 6 月 18 日
回答済み: Yuvaraj Venkataswamy 2018 年 6 月 18 日
close all clear all clc delete('Frames\*.jpg'); [filename pathname] = uigetfile({'*.avi'},'Select A Video File'); I = VideoReader([pathname,filename]); implay([pathname,filename]); pause(3); nFrames = I.numberofFrames; vidHeight = I.Height; vidWidth = I.Width; mov(1:nFrames) = ... struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 'colormap', []); WantedFrames = 50; for k = 1:WantedFrames mov(k).cdata = read( I, k); mov(k).cdata = imresize(mov(k).cdata,[256,256]); imwrite(mov(k).cdata,['Frames\',num2str(k),'.jpg']); end
for I = 1:WantedFrames im=imread(['Frames\',num2str(I),'.jpg']); figure(1),subplot(5,10,I),imshow(im); end clc for i=1:WantedFrames disp(['Processing frame no.',num2str(i)]); img=imread(['Frames\',num2str(i),'.jpg']); f1=il_rgb2gray(double(img)); [ysize,xsize]=size(f1); nptsmax=40; kparam=0.04; pointtype=1; sxl2=4; sxi2=2*sxl2; % detect points [posinit,valinit]=STIP(f1,kparam,sxl2,sxi2,pointtype,nptsmax); Test_Feat(i,1:40)=valinit; %imshow(f1,[]), hold on % axis off; % showellipticfeatures(posinit,[1 1 0]); % title('Feature Points','fontsize',12,'fontname','Times New Roman','color','Black') end
% Use KNN To classify the videos load('TrainFeature.mat') X = meas; Y = New_Label; Z = Test_Feat; % Now Classify
%ens = fitensemble(X,Y,'Subspace',300,'KNN'); %class = predict(ens,Z(1,:)) md1 = ClassificationKNN.fit(X,Y); Type = predict(md1,Z); if (Type == 1) disp('Boxing'); helpdlg(' Boxing '); elseif (Type == 2) disp('Hand Clapping'); helpdlg('Hand Clapping'); elseif (Type == 3) disp('Hand Waving'); helpdlg('Hand Waving'); elseif (Type == 4) disp('Jogging'); helpdlg('Jogging'); elseif (Type == 5) disp('Running'); helpdlg('Running'); elseif (Type == 6) disp('Walking'); helpdlg('Walking'); elseif (Type == 7) disp('Cycling'); helpdlg('Cycling'); elseif (Type == 8) disp('Surfing'); helpdlg('Surfing'); end

回答 (1 件)

Yuvaraj Venkataswamy
Yuvaraj Venkataswamy 2018 年 6 月 18 日
if true
plotconfusion(actual_labels,Predicted_labels)
end
In this, Predicted_labels are which you have classified through KNN and actual_labels are the true labels.

カテゴリ

Help Center および File ExchangeText Data Preparation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by