how to select a seed point in clustering?

2 ビュー (過去 30 日間)
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
コメント済み: Aditya Adhikary 2018 年 6 月 5 日
seed point selection in clustering technique for segmentation.
  2 件のコメント
Walter Roberson
Walter Roberson 2018 年 6 月 5 日
Are you asking how you tell a particular clustering routine which seed point to use, or are you asking for advice as to which location you should tell a clustering routine to use?
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
編集済み: Walter Roberson 2018 年 6 月 5 日
i need a code for adaptive clustering.steps is here.could you please help me?
  1. Define seed point Co by calculating the averageintensity of that image.
  2. Define a pixels cluster which the intensities areless than Co
  3. Calculate the average intensity C1 of that cluster.
  4. Iterate the process by returning to step 2 fordefining additional pixels cluster and thencalculating C2.
  5. We repeat above processes until(Ci-1-Ci)<T.where T is a calibrated parameter.
Co,C1,...Ck represent the cluster centers.
The final step is to group image pixels in such a way that pixel is assigned to the nearest cluster center measuring by Euclidian distance of intensity.

サインインしてコメントする。

採用された回答

Aditya Adhikary
Aditya Adhikary 2018 年 6 月 5 日
編集済み: Aditya Adhikary 2018 年 6 月 5 日
For k-means, you can specify the seed using the 'Start' parameter. If you specify a numeric matrix while using this parameter, it can interpret it as the seeds. For more information on how to use this option, read the documentation: kmeans Name-Value pair arguments.
  2 件のコメント
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
i need a code for adaptive clustering.steps is here.could you please help me? 1. Define seed point Co by calculating the average intensity of that image. 2. Define a pixels cluster which the intensities are less than Co 3. Calculate the average intensity C1 of that cluster. 4. Iterate the process by returning to step 2 for defining additional pixels cluster and then calculatingC2. 5. We repeat above processes until(Ci-1-Ci)<T. where T is a calibrated parameter. Co,C1,...Ck represent the cluster centers. The final step is to group image pixels in such a way that pixel is assigned to the nearest cluster center measuring by Euclidian distance of intensity.
Aditya Adhikary
Aditya Adhikary 2018 年 6 月 5 日
You may like to refer to Adaptive k-means clustering for images.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCluster Analysis and Anomaly Detection についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by