how to select a seed point in clustering?

3 ビュー (過去 30 日間)
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
コメント済み: Aditya Adhikary 2018 年 6 月 5 日
seed point selection in clustering technique for segmentation.
  2 件のコメント
Walter Roberson
Walter Roberson 2018 年 6 月 5 日
Are you asking how you tell a particular clustering routine which seed point to use, or are you asking for advice as to which location you should tell a clustering routine to use?
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
編集済み: Walter Roberson 2018 年 6 月 5 日
i need a code for adaptive clustering.steps is here.could you please help me?
  1. Define seed point Co by calculating the averageintensity of that image.
  2. Define a pixels cluster which the intensities areless than Co
  3. Calculate the average intensity C1 of that cluster.
  4. Iterate the process by returning to step 2 fordefining additional pixels cluster and thencalculating C2.
  5. We repeat above processes until(Ci-1-Ci)<T.where T is a calibrated parameter.
Co,C1,...Ck represent the cluster centers.
The final step is to group image pixels in such a way that pixel is assigned to the nearest cluster center measuring by Euclidian distance of intensity.

サインインしてコメントする。

採用された回答

Aditya Adhikary
Aditya Adhikary 2018 年 6 月 5 日
編集済み: Aditya Adhikary 2018 年 6 月 5 日
For k-means, you can specify the seed using the 'Start' parameter. If you specify a numeric matrix while using this parameter, it can interpret it as the seeds. For more information on how to use this option, read the documentation: kmeans Name-Value pair arguments.
  2 件のコメント
Sreepriya Jeejesh
Sreepriya Jeejesh 2018 年 6 月 5 日
i need a code for adaptive clustering.steps is here.could you please help me? 1. Define seed point Co by calculating the average intensity of that image. 2. Define a pixels cluster which the intensities are less than Co 3. Calculate the average intensity C1 of that cluster. 4. Iterate the process by returning to step 2 for defining additional pixels cluster and then calculatingC2. 5. We repeat above processes until(Ci-1-Ci)<T. where T is a calibrated parameter. Co,C1,...Ck represent the cluster centers. The final step is to group image pixels in such a way that pixel is assigned to the nearest cluster center measuring by Euclidian distance of intensity.
Aditya Adhikary
Aditya Adhikary 2018 年 6 月 5 日
You may like to refer to Adaptive k-means clustering for images.

サインインしてコメントする。

その他の回答 (0 件)

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by