Calculate distance between two coordinates with depth
47 ビュー (過去 30 日間)
古いコメントを表示
I need to do what's in the title. I saw a file exchange about calculating the distance between two coordinates, but how would i do it considering the altitude? I have my data in latitude and longitude so i would need something to convert it first, i saw online and doing it one by one would take to long
2 件のコメント
Ameer Hamza
2018 年 5 月 30 日
What do you mean by "considering the altitude". Give an example to clarify your question.
採用された回答
Kai Domhardt
2018 年 5 月 30 日
If I understand your question right, the solution should be to use the Haversine formula to get the 2D distance on the sphere and then use Pythagoras theorem with the difference in altitude.
dist_sphere = haversine(loc1(1:2), loc2(1:2));
delta_altitude = loc1(3)-loc2(3);
dist = sqrt( dist_sphere^2 + delta_altitude ^2 )
3 件のコメント
Kelly Kearney
2018 年 5 月 30 日
Keep in mind that the Haversine formulation calculates the distance along a sphere (i.e. a rough approximation of great circle distance along the surface), not the straight line distance between the points. That may be what you want, but if you're instead looking for a straight line distance (i.e line through the earth to connect points on opposite sides of the globe rather than line encircling the earth), there are lots of different coordinate transformation options in the Mapping Toolbox.
その他の回答 (1 件)
Rob Comer
2022 年 4 月 29 日
As Dr. Kearney suggested, the Mapping Toolbox can help. If you have it, try using ecefOffset. It computes the 3-D offset vector between two points (or, element-wise, between two sets of points), in an Earth-Centered Earth-Fixed (ECEF) coordinate system. From there, it's just a matter of computing the length of the offset vector to obtain the distance.
[deltaX,deltaY,deltaZ] = ecefOffset(spheroid,lat1,lon1,h1,lat2,lon2,h2);
d = hypot(hypot(deltaX,deltaY),deltaZ);
As the syntax suggests, the points need to be specified relative to a reference spheroid. (In many cases, wgs84ellipsoid will give an appropriate value.) The latitudes and longitudes need to be in degrees, and the height units need to match spheroid.LengthUnit. The h1 and h2 inputs should be heights above the ellipsoid, so if the available altitude values are referenced to something else (e.g., Mean Sea Level or Ground Level), they should be converted first using a geoid model and/or terrain model.
1 件のコメント
Mohammed Alnaji
2024 年 5 月 31 日
Hello,
How to convert barometric altitude (barometric pressure altitude above mean see level "AMSL") to heights above the ellipsoid using a geoid model, or other means, please?
Thank you,
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!