ode45 does not solve on the specified time interval. How do I fix this?
1 回表示 (過去 30 日間)
古いコメントを表示
Hi, I have a system of differential equations that I want to solve. However, when trying to solve this DiffEq with ode45(@(t,y)odefun(t,y),tspan,y0), where I have put my odefun in a different file, it does produce results, but on a different time interval than I want. Namely, it solves for t = [0, 0.46]*10^-6, while I specified it should solve for t = [0,1].
My code: tspan = [0,1];
y0 = [0 110 -250 15];
[t,Xsolved] = ode45(@(t,y)odefun(t,y),tspan,y0);
odefun (very lengthy equations): function dXdt = odefun(t,y)
t_f = 30;
eq1 = -(82809797410786635*tan(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(pi*y(4)*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i))/(281474976710656*y(2)); eq2 = - (10019119168824577875*y(2)^2*(1361735765217477681/(28823037615171174400000*(9/10 - (17592186044416*y(2))/5918609519667053)^(27/10)) + (8450000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 361283/50000000))/147573952589676412928 - (133588255584327705*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/(590295810358705651712*((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)); eq3 = 0; eq4 = (30*((1192349413690968375975664624440915812941824*y(2)^2)/1036642641726526473848753494572130715682924789385 - (39304596247310823728047194112*y(2))/175149693231467319161999868524045 + 1266637395197952/29593047598335265)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5) + (16561959482157327*y(4)*(300*y(2)^2*(36766865660871897387/(96970498370224996352000000*(9/10 - (17592186044416*y(2))/5918609519667053)^(37/10)) - (33800000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^5*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 35851247107254511943359375/(86237027846621531955789824*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(28/5))) + 600*y(2)*(1361735765217477681/(28823037615171174400000*(9/10 - (17592186044416*y(2))/5918609519667053)^(27/10)) + (8450000000000*(8500259669165361/(9444732965739290427392*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)) + 13/250))/(250119*y(2)^4*cos(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(y(4)*pi*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i)^2) + 361283/50000000) + (((8665580274997661924293869568000*y(2))/3184539876935769439309088518619 - 3982870920455782400/5918609519667053)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2))/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)))/73183493944770560000 - (30*((1149371655649416643768760270362731887714054341637701632*y(2)^3)/557771182528674706092576514838123659160733159500324835031693855 - (1576187923577786962762351181623950355464192*y(2)^2)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2))/175149693231467319161999868524045 - 3175389581017088/29593047598335265)*((1266637395197952*y(2))/29593047598335265 - (19652298123655411864023597056*y(2)^2)/175149693231467319161999868524045 + (397449804563656125325221541480305270980608*y(2)^3)/1036642641726526473848753494572130715682924789385 + (5520653160719109*y(4)*((4332790137498830962146934784000*y(2)^2)/3184539876935769439309088518619 - (3982870920455782400*y(2))/5918609519667053 + 288000))/731834939447705600000 + 33/2)^2)/((574685827824708321884380135181365943857027170818850816*y(2)^4)/557771182528674706092576514838123659160733159500324835031693855 - (1050791949051857975174900787749300236976128*y(2)^3)/1036642641726526473848753494572130715682924789385 + (119770698800860541596490268672*y(2)^2)/175149693231467319161999868524045 - (6350779162034176*y(2))/29593047598335265 + 229/5)^2 - (82809797410786635*y(3)*tan(log((- 74530005132491619276355244274867242431640625*y(4)^2*pi^2 - 8612356148643476394993094470262377676800000000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5) - 248801399849700440447422519369183536317307289600000000*y(4)^2*pi^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5) - 12261830142026331516929221358481899097130334070767616*y(2)^2*y(3)^2*(9/10 - (17592186044416*y(2))/5918609519667053)^(46/5))^(1/2)/(pi*y(4)*8633076226496069765625i + y(4)*pi*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)*498799959753106275696640000i - 110733148343331824175415296*y(2)*y(3)*(9/10 - (17592186044416*y(2))/5918609519667053)^(23/5)))*1i))/(281474976710656*y(2)^2) - (96559323064259661442131689472*y(2))/35029938646293463832399973704809 - 1636073302130688/5918609519667053; dXdt = zeros(4,1); dXdt(1) = eq1*t_f; dXdt(2) = eq2*t_f; dXdt(3) = eq3*t_f; dXdt(4) = eq4*t_f; end
Thanks in advance!
8 件のコメント
Jan
2018 年 5 月 29 日
I suggest to solve the actual problem of the integration interval at first. But then a massive simplification of the equation should be the next step, if runtime matters.
Are Mjaavatten
2018 年 5 月 30 日
Your system is numerically highly unstable, and the solution depends heavily on the integration method and accuracy parameters. Using ode15s, which is probably more robust than ode45 in this case, the solution seems to have a near singularity at around t = 4.4e-6, where y(4) gets very close to zero.
Try
[t,u] = ode15s(@deWringer,[0,1e-5],y0);
plot(t,u,'.')
(I saved your odefun as deWringer.m.)
Most likely, there is something wrong in your derivation of odefun.
回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!