Info

この質問は閉じられています。 編集または回答するには再度開いてください。

How to get symbolic expression for alpha, beta, gama, phi21 and phi31 of the equations?

1 回表示 (過去 30 日間)
Mukul
Mukul 2018 年 5 月 10 日
閉鎖済み: John D'Errico 2018 年 6 月 22 日
Hi folks,
I got a system of six equations i.e three for P1, P2 and P3 and three for Q1, Q2 and Q3 and I need to find out the expression of alpha, beta, gama, phi_21 and phi_31 for which the Q1, Q2 and Q3 would be minimum for a given P1, P2 and P3.
Can anyone please help me to find out those analytical expression? Your help is much appreciated.
The equations are as follows.
P1 = (8*V1*V2/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(beta/2)*sin(phi_21)+(8*V1*V3/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(gama/2)*sin(phi_31)
P2 = -(8*V1*V2/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(beta/2)*sin(phi_21)+(8*V2*V3/(2*pi*f*L*(pi)^2))*cos(beta/2)*cos(gama/2)*sin(phi_31-phi_21)
P3 = -(8*V1*V3/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(gama/2)*sin(phi_31)+(8*V2*V3/(2*pi*f*L*(pi)^2))*cos(beta/2)*cos(gama/2)*sin(phi_21-phi_31)
Q1=(16*V1^2/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(alpha/2)-(8*V1*V2/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(beta/2)*cos(phi_21)-(8*V1*V3/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(gama/2)*cos(phi_31)
Q2=-(8*V1*V2/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(beta/2)*cos(phi_21)+(16*V2^2/(2*pi*f*L*(pi)^2))*cos(beta/2)*cos(beta/2)-(8*V2*V3/(2*pi*f*L*(pi)^2))*cos(beta/2)*cos(gama/2)*cos(phi_31-phi_21)
Q3=-(8*V1*V3/(2*pi*f*L*(pi)^2))*cos(alpha/2)*cos(gama/2)*cos(phi_31)-(8*V2*V3/(2*pi*f*L*(pi)^2))*cos(beta/2)*cos(gama/2)*cos(phi_31-phi_21)+(16*V3^2/(2*pi*f*L*(pi)^2))*cos(gama/2)*cos(gama/2)
  1 件のコメント
Mukul
Mukul 2018 年 6 月 22 日
Can anyone please help with this problem?

回答 (0 件)

この質問は閉じられています。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by