Info

この質問は閉じられています。 編集または回答するには再度開いてください。

How to adjust trainNetwork to meet the solution of train?

1 回表示 (過去 30 日間)
Michael
Michael 2018 年 5 月 9 日
閉鎖済み: MATLAB Answer Bot 2021 年 8 月 20 日
I tested train and trainNetwork on a test bench problem to investigate the difference.
%%generate data
N = 1e3;
x = linspace(0,4*pi,N);
y = sin(x)+0.5*sin(3*x)+0.25*sin(7*x);
figure(1);
plot(x,y); hold on;
%%train network
net = feedforwardnet([10 10]);
net.layers{1}.transferFcn = 'logsig'; % or 'tansig'
net.layers{2}.transferFcn = 'logsig';
net.trainFcn = 'trainbr'; % or 'trainlm'
net = train(net,x,y);
%%predict
ypred = net(x);
plot(x,ypred,'.');
%%train network
inputSize = 1;
numResponses = 1;
numHiddenUnits = 10;
layers = [sequenceInputLayer(inputSize);
fullyConnectedLayer(numHiddenUnits);
fullyConnectedLayer(numHiddenUnits);
fullyConnectedLayer(numResponses);
regressionLayer];
opts = trainingOptions('adam','MaxEpochs',250,'Plots','training-progress','InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise','LearnRateDropFactor',0.75,'LearnRateDropPeriod',100, ...
'MiniBatchSize',9e9,'L2Regularization',0.0001);
%%train the network
net = trainNetwork(x,y,layers,opts);
%%predict
ypred = predict(net,x);
plot(x,ypred,'.');
I tried different options for trainNetwork but the solution (straight line) stays the same. How do I have to adjust the options in order to achive the same performance as train?

回答 (0 件)

この質問は閉じられています。

製品


リリース

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by