Solve an ODE with runge kutta method

4 ビュー (過去 30 日間)
Luke
Luke 2011 年 3 月 25 日
Hi,
I'm trying to solve the following eqaution using runge kutta method. I have not seen any examples of ODE45 or ODE15s for equations in this type.
Ay''+Byy'+Cy'+Dy+E=0; where A,B,C,D and E are constants.
Boundary conditions are y(0)=0; y(l)= 2.3
Thanks

採用された回答

Jarrod Rivituso
Jarrod Rivituso 2011 年 3 月 25 日
Ah, the glory of state-space. First, make the substitution
u = y'
Then, you have a system of two equations
u' = (1/A)*(-B*y*u-C*u-D*y-E)
y' = u
Now you can use ode45...
>> [t,y] = ode45(@xdot,[0 1],[0;0]);
where the function xdot is...
function dx = xdot(t,x)
A = 1;
B = 1;
C = 1;
D = 1;
E = 1;
u = x(1);
y = x(2);
dx(1,1) = (1/A)*(-B*y*u-C*u-D*y-E);
dx(2,1) = y;
Note that I didn't really understand your initial conditions. For your differential equation, you would need to specify an initial y and y', I believe.

その他の回答 (1 件)

Jan
Jan 2011 年 3 月 25 日
If you have "boundary conditions", you need a different solver, see bvp4c and bvp5c. But two conditions are not enough to find a solution for of 2nd order ODE - you need an additional condition.
  1 件のコメント
Luke
Luke 2011 年 3 月 29 日
I solved this equation with bvp4c. But it takes so long to give me an answer. The people who worked on a similar equation suggested to use a Runge-Kutta Nystrom Method, which I'm not familier. Are you guys conversant with this method?

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by