Polyfit with odd powers only?
11 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I am trying to get a polyfit with only odd powers - so polyfit will not work because it has odd and even.
I do not have the curve fitting toolbox.
Is there another function of lines of code that will do this? I've searched around and read topics but cant seem to get it working...
x = [-50 -49.9 -49.7 -49.6 -49.4 -49.3 -49.1 -49 -48.8 -48.7 -48.6 -48.4 -48.3 -48.1 -48 -47.8 -47.7 -47.5 -47.4 -47.2 -47.1 -47 -46.8 -46.7 -46.5 -46.4 -46.2 -46.1 -45.9 -45.8 -45.7 -45.5 -45.4 -45.2 -45.1 -44.9 -44.8 -44.6 -44.5 -44.3 -44.2 -44.1 -43.9 -43.8 -43.6 -43.5 -43.3 -43.2 -43 -42.9 -42.8 -42.6 -42.5 -42.3 -42.2 -42 -41.9 -41.7 -41.6 -41.4 -41.3 -41.2 -41 -40.9 -40.7 -40.6 -40.4 -40.3 -40.1 -40 -39.9 -39.7 -39.6 -39.4 -39.3 -39.1 -39 -38.8 -38.7 -38.5 -38.4 -38.3 -38.1 -38 -37.8 -37.7 -37.5 -37.4 -37.2 -37.1 -37 -36.8 -36.7 -36.5 -36.4 -36.2 -36.1 -35.9 -35.8 -35.6 -35.5 -35.4 -35.2 -35.1 -34.9 -34.8 -34.6 -34.5 -34.3 -34.2 -34.1 -33.9 -33.8 -33.6 -33.5 -33.3 -33.2 -33 -32.9 -32.7 -32.6 -32.5 -32.3 -32.2 -32 -31.9 -31.7 -31.6 -31.4 -31.3 -31.2 -31 -30.9 -30.7 -30.6 -30.4 -30.3 -30.1 -30 -29.8 -29.7 -29.6 -29.4 -29.3 -29.1 -29 -28.8 -28.7 -28.5 -28.4 -28.3 -28.1 -28 -27.8 -27.7 -27.5 -27.4 -27.2 -27.1 -26.9 -26.8 -26.7 -26.5 -26.4 -26.2 -26.1 -25.9 -25.8 -25.6 -25.5 -25.4 -25.2 -25.1 -24.9 -24.8 -24.6 -24.5 -24.3 -24.2 -24 -23.9 -23.8 -23.6 -23.5 -23.3 -23.2 -23 -22.9 -22.7 -22.6 -22.5 -22.3 -22.2 -22 -21.9 -21.7 -21.6 -21.4 -21.3 -21.1 -21];
y = [-24.75097 -24.67164 -24.4801 -24.3577 -24.16221 -24.07226 -23.8446 -23.74222 -23.54947 -23.44198 -23.34674 -23.1479 -23.02214 -22.84665 -22.73298 -22.54093 -22.42616 -22.22016 -22.12129 -21.92824 -21.83178 -21.72892 -21.51621 -21.42578 -21.21406 -21.11511 -20.91655 -20.82348 -20.60448 -20.51302 -20.41675 -20.21547 -20.11611 -19.92628 -19.81589 -19.62125 -19.51582 -19.31288 -19.21443 -19.01194 -18.91046 -18.82235 -18.62306 -18.52276 -18.31691 -18.21565 -18.01884 -17.91986 -17.7219 -17.62982 -17.53392 -17.32261 -17.22725 -17.02708 -16.92875 -16.72639 -16.62719 -16.42994 -16.32574 -16.12839 -16.03569 -15.93901 -15.73049 -15.62979 -15.44024 -15.33308 -15.14062 -15.04554 -14.83767 -14.74988 -14.64451 -14.44684 -14.34319 -14.14475 -14.05439 -13.85229 -13.75652 -13.55815 -13.45882 -13.25949 -13.17189 -13.06923 -12.8671 -12.77876 -12.57822 -12.48735 -12.29286 -12.19462 -12.00186 -11.91447 -11.81787 -11.63201 -11.54073 -11.34952 -11.27196 -11.0899 -11.00039 -10.82415 -10.74487 -10.57193 -10.49104 -10.40562 -10.24737 -10.16286 -10.00381 -9.92581 -9.77272 -9.70086 -9.53765 -9.47072 -9.39156 -9.24676 -9.17277 -9.02883 -8.96238 -8.82083 -8.75691 -8.62635 -8.5598 -8.44304 -8.38449 -8.32837 -8.21934 -8.16412 -8.05312 -8.00186 -7.90721 -7.85077 -7.74586 -7.69695 -7.63831 -7.53163 -7.48072 -7.37289 -7.32272 -7.21067 -7.15707 -7.05749 -7.01419 -6.9207 -6.88097 -6.84193 -6.77068 -6.74107 -6.6824 -6.65511 -6.60911 -6.58551 -6.54557 -6.51723 -6.503 -6.46382 -6.44574 -6.39763 -6.38649 -6.34661 -6.33092 -6.29201 -6.27877 -6.2389 -6.22502 -6.20754 -6.17015 -6.15153 -6.11958 -6.10592 -6.06368 -6.05479 -6.023 -6.00659 -5.99346 -5.96016 -5.94925 -5.9124 -5.90166 -5.87321 -5.85589 -5.82928 -5.82597 -5.7912 -5.77671 -5.76612 -5.73985 -5.731 -5.71439 -5.70532 -5.67559 -5.66804 -5.6418 -5.63944 -5.63151 -5.61857 -5.60494 -5.58464 -5.58045 -5.55205 -5.54998 -5.52862 -5.52516 -5.50865 -5.50969];
Please can someone assist
0 件のコメント
採用された回答
Torsten
2018 年 5 月 8 日
編集済み: Torsten
2018 年 5 月 8 日
x = [ ... ];
y = [ ... ];
x = x.';
y = y.';
n = 5; % degree of polynomial p ; n must be odd
A = [];
for i = 1:2:n
A = [A x.^i];
end
coeff = A\y % Polynomial is given by p(z)=coeff(1)*z + coeff(2)*z^3 + ... + coeff((n+1)/2)*z^n
Best wishes
Torsten.
2 件のコメント
Guillaume
2018 年 5 月 8 日
You can construct A more simply:
A = x(:) .^ (1:2:n); %R2016b or later
A = bsxfun(@power, x(:), 1:2:n); %pre-R2016b
その他の回答 (1 件)
Rik
2018 年 5 月 8 日
%set initial estimate
intial_b_vals=[1 5];
x = rand(10,1);%x-values
yx = rand(10,1);%measured y(x)
%create function (must support vector input)
a=(1:(2*length(intial_b_vals)-1));
a(2,1==mod(a,2))=1:length(intial_b_vals);
str=sprintf('b(%d)*x.^%d+',a([2 1],:));
str=strrep(str,'b(0)','0');
str(end)='';
fun=eval(['@(b,x) ' str]);
%set options and perform actual fit
%Ordinary Least Squares cost function
OLS = @(b) sum((y(b,x) - yx).^2);
opts = optimset('MaxFunEvals',50000, 'MaxIter',10000);
%Use 'fminsearch' to minimise the 'OLS' function
fit_output = fminsearch(OLS, intial_b_vals, opts);
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!