Simpson's rule implementation

5 ビュー (過去 30 日間)
Adomas Bazinys
Adomas Bazinys 2018 年 5 月 6 日
編集済み: Jan 2018 年 5 月 7 日
function I = simpsons()
f=@(x) (3+x.^1/2);
a = 1;
b = 6;
n = 20;
disp('n I h')
disp('________________________________')
while (n <= 140)
if numel(f)>1 % If the input provided is a vector
n=numel(f)-1;
h=(b-a)/n;
I = h/3*(f(1)+2*sum(f(3:2:end-2))+4*sum(f(2:2:end))+f(end));
else % If the input provided is an anonymous function
h=(b-a)/n;
xi=a:h:b;
I = h/3*(f(xi(1))+2*sum(f(xi(3:2:end-2)))+4*sum(f(xi(2:2:end)))+f(xi(end)));
end
fprintf('%f \t %f \t %f \n', n, I, h);
n=n+20;
end
end
Hey, I'm trying to implement Simpson's rule in matlab. I want to make n every loop n=n+20 and get different I values, but I do not get it. Where is the problem? I is numerical integration formula.

回答 (1 件)

Jan
Jan 2018 年 5 月 7 日
編集済み: Jan 2018 年 5 月 7 日
The number of steps does not matter, if the function is linear:
f=@(x) (3+x.^1/2)
x.^1/2 is (x .^ 1) / 2, which is the same as x/2. Operator precedence: power is higher than division. I guess you mean:
f = @(x) (3 + x.^(1/2))
% or: f=@(x) (3 + x.^0.5)
% or: f=@(x) (3 + sqrt(x)) % Fastest

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by