how classify gaussien distribution ?

4 ビュー (過去 30 日間)
sweet dm
sweet dm 2018 年 4 月 1 日
回答済み: Shantanu Dixit 2025 年 1 月 24 日 9:59
hi every one i do binary classification , i have 40 segments and 11 features , each feature represent a gaussien distribution(100 samples) how can SVM classify this data.
thanks in advance

回答 (1 件)

Shantanu Dixit
Shantanu Dixit 2025 年 1 月 24 日 9:59
Hi sweet,
You can train an SVM classifier to classify your data using the 'fitcsvm' function in MATLAB. You can organize your features 'X' as a matrix where each row corresponds to observation, and each column represents a feature. Similarly prepare labels 'Y' as a vector where each element corresponds to the class label for the respective row in 'X'. Use 'fitcsvm' function to train the SVM. For the gaussian distributed features, you may want to use an RBF kernel as follows
% X and Y as matrix of predictor data and array of class labels respectively
SVMModel = fitcsvm(X, Y, 'KernelFunction', 'rbf', 'Standardize', true, 'ClassNames', [-1, 1]);
Once the classifier is trained you can use it to classify new data as follows:
[label,score] = predict(SVMModel,newX);
Additionally you can refer to useful MathWorks documentation on Training SVM classifiers:
Hope this helps!

カテゴリ

Help Center および File ExchangeClassification についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by