Finding Particular Solution of a Second Order Differential equation with dsolve

14 ビュー (過去 30 日間)
jake stan
jake stan 2018 年 3 月 19 日
コメント済み: Torsten 2022 年 7 月 8 日
The homogenous equation: 28^(e^(−2x)) − 18(e(−3x))
I found the homogenous solution to the equation, however I am not sure how to find the particular solution when the differential equation is equal to 8. I tried using the dsolve function, however it doesn't give me the correct solution. Apparently the particular solution is supposed to be 4/3.
y2 = dsolve('D2v + 5*Dv + 6*v = 8')

採用された回答

Birdman
Birdman 2018 年 3 月 19 日
Well, it should give you the correct solution. In my computer it worked:
>>syms v(x)
eq=diff(v,2)+5*diff(v)+6*v==8;
v(x)=dsolve(eq)
ans =
C1*exp(-2*x) + C2*exp(-3*x) + 4/3
  2 件のコメント
Jaryd Kynaston-Blake
Jaryd Kynaston-Blake 2022 年 7 月 8 日
編集済み: Jaryd Kynaston-Blake 2022 年 7 月 8 日
now how can get values for C1 & C2 using:
V(0) = V0 % just an arbitrary variable
& t(0) = 0
Sincerely.
Torsten
Torsten 2022 年 7 月 8 日
syms v(x) v0
eq = diff(v,2)+5*diff(v)+6*v==8;
Dv = diff(v,x);
cond = [v(0)==v0, Dv(0)==0];
vSol(x) = dsolve(eq,cond)
vSol(x) = 

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSymbolic Math Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by