Finding Particular Solution of a Second Order Differential equation with dsolve
14 ビュー (過去 30 日間)
古いコメントを表示
The homogenous equation: 28^(e^(−2x)) − 18(e(−3x))
I found the homogenous solution to the equation, however I am not sure how to find the particular solution when the differential equation is equal to 8. I tried using the dsolve function, however it doesn't give me the correct solution. Apparently the particular solution is supposed to be 4/3.
y2 = dsolve('D2v + 5*Dv + 6*v = 8')
0 件のコメント
採用された回答
Birdman
2018 年 3 月 19 日
Well, it should give you the correct solution. In my computer it worked:
>>syms v(x)
eq=diff(v,2)+5*diff(v)+6*v==8;
v(x)=dsolve(eq)
ans =
C1*exp(-2*x) + C2*exp(-3*x) + 4/3
2 件のコメント
Jaryd Kynaston-Blake
2022 年 7 月 8 日
編集済み: Jaryd Kynaston-Blake
2022 年 7 月 8 日
now how can get values for C1 & C2 using:
V(0) = V0 % just an arbitrary variable
& t(0) = 0
Sincerely.
Torsten
2022 年 7 月 8 日
syms v(x) v0
eq = diff(v,2)+5*diff(v)+6*v==8;
Dv = diff(v,x);
cond = [v(0)==v0, Dv(0)==0];
vSol(x) = dsolve(eq,cond)
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!