Image detection using SVM classifier from wavelets features extraction
2 ビュー (過去 30 日間)
古いコメントを表示
I have extracted wavelet features from a set of images and stored as following: cov_features = [R4_f1 R4_f2 R4_f3 R4_f4 R5_f1 R5_f2 R5_f3 R5_f4 R6_f1 R6_f2 R6_f3 R6_f4 G4_f1 G4_f2 G4_f3 G4_f4 G5_f1 G5_f2 G5_f3 G5_f4 G6_f1 G6_f2 G6_f3 G6_f4 B4_f1 B4_f2 B4_f3 B4_f4 B5_f1 B5_f2 B5_f3 B5_f4 B6_f1 B6_f2 B6_f3 B6_f4]
% cov_features = wavelet(im);
for j = 1: 144
wavelet_Training_Feature(j, i) = cov_features(j); % for each image 144 wavelet features here
%i=total_number_of_image
end
But I can not train and classify using SVM. I want to classify images in two classes polyp or nonpolyp. I know there is a builtin function in MATLAB but I don't know to adapt it to be used in this job,any help or suggestion will be helpful to me. Thank to All
0 件のコメント
回答 (1 件)
Abhishek Ballaney
2018 年 3 月 19 日
https://in.mathworks.com/help/stats/support-vector-machine-classification.html
参考
カテゴリ
Help Center および File Exchange で AI for Signals and Images についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!