How does matlabs eigs normalise eigenvectors?

5 ビュー (過去 30 日間)
Sam Tomlinson
Sam Tomlinson 2018 年 3 月 2 日
コメント済み: Sam Tomlinson 2018 年 3 月 5 日
In solving the generalised eigenvalue problem Ax=cBx using eig, one gets V and D as outputs where V is the eigenvectors corresponding to the eigenvalues contained in the main diagonal of D. My question is how does matlab normalise these eigenvectors?
In the case of the problem Ax=cx the documentation states 'The eigenvectors in V are normalized so that the 2-norm of each is 1' but for the generalised form 'The 2-norm of each eigenvector is not necessarily 1' (not helpful).

採用された回答

Christine Tobler
Christine Tobler 2018 年 3 月 2 日
If the matrix B is symmetric positive definite, the eigenvectors are normalized in B-norm (and even orthogonal in B-norm if A is also symmetric). If B is not symmetric positive definite, the 2-norm of each eigenvector is 1, but they will not typically be orthonormal.
  1 件のコメント
Sam Tomlinson
Sam Tomlinson 2018 年 3 月 5 日
Brilliant, thank you very much!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by