ode 45 giving the wrong solution
2 ビュー (過去 30 日間)
古いコメントを表示
hello i am trying to use ode command to solve this eqution using ode command :
function [ x_diff_ode ] = x_ode_method( t,x )
global A_a A_b B_a B_b f U t_on C_a C_b
ratio=rem(t,(1/f));
S_switch_a=ratio<t_on;
A_total=A_a*(S_switch_a)+A_b* not(S_switch_a);
B_total=B_a*(S_switch_a)+B_b*not(S_switch_a);
x_diff_ode= A_total*x+ B_total*U;
end
how ever this is giving me the wrong plot , and when i did it numericly using oilers method i got the the right plot ,here is the code using oile'rs method :
function [x_zigzag,t,z,V_R_oilers_theory,switch_a,t_switch] = eulers_method_numeric_sulution( A_a,A_b,B_a,B_b,f,U,t_on,C_a,C_b,number_of_points, number_of_cycles )
T=1/f;
% number_of_cycles=900;
% samples_per_cycle=300;
total_samples=number_of_points;
run_time=(T)*(number_of_cycles);
x1_zigzag=[0;0;0;0];
t=linspace(0,run_time, total_samples+1);
% t_delta=(T)/(samples_per_cycle);
t_delta=(run_time-0)/(total_samples+1);
for i=1:total_samples
ratio(i)=rem(t(i),(T));
S_switch_a(i)=ratio(i)>t_on;
A_total=A_a* S_switch_a(i)+A_b* not(S_switch_a(i));
B_total=B_a* S_switch_a(i)+B_b*not(S_switch_a(i));
C_total=C_a* S_switch_a(i)+C_b*not(S_switch_a(i));
x1_zigzag(:,i+1)=x1_zigzag(:,i)+t_delta*( A_total*x1_zigzag(:,i)+B_total*U);
V_R_oilers_theory(:,i+1)=C_total*x1_zigzag(:,i+1);
end
x_zigzag= x1_zigzag;
t=t;
z=t_delta;
V_R_oilers_theory=V_R_oilers_theory;
switch_a=S_switch_a;
t_switch=total_samples;
end
my question is why the ode command fails and giving me the wrong plot ? and how can i fix it ?
3 件のコメント
回答 (1 件)
Jan
2018 年 2 月 15 日
why the ode command fails and giving me the wrong plot
You did not show us your "ode command".
Your function to be integrated contains a discontinuity:
S_switch_a = ratio < t_on;
This is a DON'T for the numerical integration, because standard integrators as Matlab ODE45 are designed to handle smooth functions only. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!