Evaluating gradient of eigenvectors.

5 ビュー (過去 30 日間)
Matt
Matt 2018 年 2 月 13 日
コメント済み: Matt 2018 年 2 月 15 日
Suppose I use Matlab's pde toolbox to solve an eigenvalue problem using FEM. Specifically I am using:
result=solvepdeeig(model,[0,10]);
eigenvectors = result.Eigenvectors;
eigenvalues = result.Eigenvalues;
Is there a way of evaluating the gradient of the computed eigenvectors, say using something similar to the
evaluateGradient
function?

採用された回答

Ravi Kumar
Ravi Kumar 2018 年 2 月 14 日
Hi Matt,
The values in eigenvectors are scaled values, with no option to re-scale them or normalize as per choice. Hence, they do not have a physical meaning. So evaluating gradients using them is not suggested.
Can you explain why do you need to take gradients of eigenvectors? I could suggest a workaround depending on your use case.
Regards, Ravi
  4 件のコメント
Matt
Matt 2018 年 2 月 14 日
Thanks, I'll try it out. Looks ideal!
Matt
Matt 2018 年 2 月 15 日
Works a treat, thank you very much!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeEigenvalue Problems についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by