How can i solve a system coupled of PDE with an ODE using finite difference?

6 ビュー (過去 30 日間)
Moji
Moji 2018 年 2 月 12 日
コメント済み: Kuldeep Malik 2023 年 8 月 10 日
I tried several methods, but i couldn't find the solution. for instance, i used Crunk-Nicelson finite difference method like following script but i don't know how can i apply the secend eq.(ODE) inside the matrix. the big problem here is that each incerment is too small.
% The Crank Nicolson Method
clc, clear, close
eps=0.5; tor=3; lf=5*10^-6;%microM dm=60*8.6*10^-6; %m2/s kg= 1.87*60; % m/s area=0.6 ;% m^-1
cin=10; % ki=1*60; %mg/m3s Ki=0.24; %m3/mg miu=0.3*10^-6; %microM^-1 beta=0.5; iif=16.5*10;%mw/cm2
Kw=4.9*10^-4;% m^3/mg cw=1000; %mg/m3 ux=0.011*60; %m/s
% syms x % d=int((exp(-miu*lf*x)^beta)/lf,0,lf);
%%%%%%%%%%%%%%%%%%parameter
f=iif^beta; g=ki*Ki; h=Kw*cw; alfa=eps*dm/tor;
tf=180; nx=100; dx=lf/nx; nt=2000; dt=tf/nt;
% --- Constant Coefficients of the tridiagonal system
c = alfa/(2*dx^2)+ux/(4*dx); % Subdiagonal: coefficients of u(i-1)
b = alfa/(2*dx^2)-ux/(4*dx); % Super diagonal: coefficients of u(i+1)
a = 1/dt+b+c; % Main Diagonal: coefficients of u(i)
% Boundary conditions and Initial Conditions
Uo(1)=20; Uo(2:nx)=0;
Un(1)=20; Un(nx)=0;
% Store results for future use
UUU(1,:)=Uo;
% Loop over time
for k=2:nt
for ii=1:nx-2
if ii==1
d(ii)=c*Uo(ii)+(1/dt-b-c)*Uo(ii+1)+b*Uo(ii+2)+c*Un(1);%-f*g*Uo(ii+1)/(1+h+Ki*Uo(ii+1));
elseif ii==nx-2
d(ii)=c*Uo(ii)+(1/dt-b-c)*Uo(ii+1)+b*Uo(ii+2)+b*Un(nx);%-f*g*Uo(ii+1)/(1+h+Ki*Uo(ii+1));
else
d(ii)=c*Uo(ii)+(1/dt-b-c)*Uo(ii+1)+b*Uo(ii+2);%-f*g*Uo(ii+1)/(1+h+Ki*Uo(ii+1));
end
end % note that d is row vector
%%%%%%%%%%%%%%%%%
% Transform a, b, c constants in column vectors:
bb=b*ones(nx-3,1);
cc=c*ones(nx-3,1);
aa=a*ones(nx-2,1);
% Use column vectors to construct tridiagonal matrices
AA=diag(aa)+ diag(-bb,1)+ diag(-cc,-1);
% Find the solution for interior nodes i=2,3,4,5
% UU=AA\d';
UU=inv(AA)*d';
% Build the whole solution as row vector
Un=[Un(1),UU',Un(nx)];
Un(nx)=Un(nx-1);
UUU(k,:)=Un;
Uo=Un;
end
t=[0:dt:tf-dt];
uf=UUU(:,end);
plot(t,uf)
  1 件のコメント
Kuldeep Malik
Kuldeep Malik 2023 年 8 月 10 日
What if initial and boundary conditions are functions instead of constants

サインインしてコメントする。

採用された回答

Torsten
Torsten 2018 年 2 月 13 日
Take a look at the answer provided here:
https://de.mathworks.com/matlabcentral/answers/371313-error-in-solving-system-of-two-reaction-diffusion-equations
The problem is very similar to yours.
Best wishes
Torsten.
  10 件のコメント
Torsten
Torsten 2018 年 2 月 16 日
Your new code is too much different from the one I linked to.
Sorry, but I don't have the time to dive in that deep.
Best wishes
Torsten.
Torsten
Torsten 2018 年 2 月 16 日
As you can see from the Username, it's code I wrote by myself.
Maybe if you ask more clearly what you don't understand, I will be able to explain.
Best wishes
Torsten.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeEquation Solving についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by