How to check the kernel parameter values of a Gaussian process regression (GPR) model after training

2 ビュー (過去 30 日間)
I am trying to train a GPR model with the length scale of the kernel function in certain range. Therefore, I did the following ( follow this example ):
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
However, after training, I found that the kernel parameters in the trained model is empty. This confuses me a lot and I tried different ranges of kernel parameters and found that this restriction on its range actually worked. So I was wondering how I could obtain the exact value of kernel parameters from the trained GPR model. Thanks in advance!

採用された回答

Don Mathis
Don Mathis 2018 年 2 月 1 日
You can see the kernel parameters like this:
gprMdl.KernelInformation.KernelParameters
By default, params(4) (KernelScale) is not optimized. To optimize it, you'll need to set the Optimize field:
params = hyperparameters('fitrgp',X,y);
params(4).Range = [1,10];
params(4).Optimize = true;
gprMdl = fitrgp(X, y, 'OptimizeHyperparameters', params);
gprMdl.KernelInformation.KernelParameters
  5 件のコメント
Shoubo
Shoubo 2018 年 2 月 2 日
Got it. Thank you so much for your time!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeGaussian Process Regression についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by