Solve Partial Differential Equation
2 ビュー (過去 30 日間)
古いコメントを表示
Let D=(d/dx+fn d/dy) fn=f(xn,yn) Then, Df=(d/dx+fn d/dy)f=fx+ffy D2f=(d/dx+fd/dy)^2 f(xn,yn) =(d/dx+f d/dy) (fx + ffy) Then, how can I find D4f using MATLAB?
0 件のコメント
回答 (1 件)
SAI SRUJAN
2024 年 3 月 27 日
Hi soe,
I understand that you are trying to solve a partial differential equation.
To find 'D4f' using MATLAB, you can use the Symbolic Math Toolbox. Please go through the following code snippet to proceed further,
syms x y f
fn = f(x, y);
D = diff(f, x) + fn * diff(f, y);
D2 = diff(D, x) + fn * diff(D, y);
D3 = diff(D2, x) + fn * diff(D2, y);
D4 = diff(D3, x) + fn * diff(D3, y);
In this code, we define the symbolic variables 'x', 'y', and 'f'. Then, we define 'fn' as a function of 'x' and 'y'. We calculate 'D'and we continue this process to calculate 'D2', 'D3', and finally 'D4', which represents the fourth derivative of 'f' with respect to 'x' and 'y'.
For a comprehensive understanding of the 'diff' function in MATLAB, please refer to the following documentation.
I hope this helps!
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Calculus についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!