How to find optimal k from k means clustering by using elbow method
74 ビュー (過去 30 日間)
古いコメントを表示
I want to find optimal k from k means clustering by using elbow method . I have 100 customers and each customer contain 8689 data sets. How can I create a program to cluster this data set into appropriate k groups.
0 件のコメント
採用された回答
kira
2019 年 5 月 2 日
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);
0 件のコメント
その他の回答 (1 件)
Saranya A
2018 年 3 月 8 日
編集済み: KSSV
2021 年 2 月 11 日
This function will help you to find the optimum number of clusters. https://in.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans-x-
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Cluster Analysis and Anomaly Detection についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!