Erroneous eigenvalue computation for large matrices in R2016a when forcing single threaded execution

8 ビュー (過去 30 日間)
Why does MATLAB R2016a produce wrong eigenvalues for large matrices (N>7799) when forced to run as a single threaded application? 
Example code
%Diagonalization of a tridiagonal matrix.
t=1; %off-diagonal elements
tic;
%creates tridiagonal matrix of size NxN
T=gallery('tridiag',N,t,0,t);
T=full(T);
T(1,N)=t;
T(N,1)=t;
[V,D]=eig(T,'vector');%compute eigenvalues and store in vector
fprintf('Invoking "eig()" yields eigenvalues:\n')
fprintf('max: %2.4f \n',max(D))
fprintf('min: %2.4f \n',min(D))
toc;
exit
Execution Command
taskset -c 0 /opt/MATLAB/R2016a/bin/matlab -nodisplay -nodesktop -nosplash -nojvm -r "N=7800;test"
The above command yields wrong eigenvalues. The correct max and min eigenvalues are supposed to be 2 and -2 respectively.
However, the following multithreaded implementation produces accurate results: 
 
taskset -c 0,1 /opt/MATLAB/R2016a/bin/matlab -nodisplay -nodesktop -nosplash -nojvm -r "N=7800;test"
 

採用された回答

MathWorks Support Team
MathWorks Support Team 2018 年 1 月 2 日
CAUSE:
This error is due to a bug in the Intel Math Kernel Library 11.2.3 that was shipped with MATLAB R2016a. This is a bug that is present only in MATLAB R2016a.
SOLUTION: 
Please upgrade to a different release of MATLAB in order to avoid this error. 

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

製品


リリース

R2016a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by