フィルターのクリア

deep learning convnet with matlab

5 ビュー (過去 30 日間)
Salma Hassan
Salma Hassan 2017 年 12 月 19 日
編集済み: Cedric 2017 年 12 月 31 日
i want to divide the dataset into 3 parts ( training , validation , test ) with matlab
is this line true
[trainingimages,valDigitData,testimage]=splitEachLabel(allimages,0.7,0.2,0.1 ,'randomize');
and then into the training option i add the
trainingOptions('sgdm',....,'ValidationData',valDigitData,'ValidationFrequency',50)
is this ture

回答 (1 件)

Salma Hassan
Salma Hassan 2017 年 12 月 31 日
ok i found the answer
Create three new datastores from the files in imds. The first datastore imds60 contains the first 60% of files with the demos label and the first 60% of files with the imagesci label. The second datastore imds10 contains the next 10% of files from each label. The third datastore imds30 contains the remaining 30% of files from each label. If the percentage applied to a label does not result in a whole number of files, splitEachLabel rounds down to the nearest whole number.
[imds60, imds10, imds30] = splitEachLabel(imds,0.6,0.1)

カテゴリ

Help Center および File ExchangePreprocess Data for Deep Neural Networks についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by