regression with ARMA_GARCH errors

3 ビュー (過去 30 日間)
Manthos Vogiatzoglou
Manthos Vogiatzoglou 2017 年 12 月 16 日
コメント済み: Manthos Vogiatzoglou 2017 年 12 月 24 日
I want to estimate a regression model with ARMA(3,3) - GARCH(1,1) errors:
y_t = bX_t + e_t
e_t = a_1e_{t-1}+...+a_3e_{t-3} + u_t + r_1u_{t-1}+...+r_3u_{t-3}
u_t = h_tε_t
h_t = ω + αu^2_{t-1} + βh_{t-1}
I know I can do it in two steps. Estimate the regression first and then fit an ARMA model with GARCH variance to the residuals of the regression, however I was wondering If I could do it in one step. The obvious choice would be a regARIMA model but regARIMA model doesn't support garch(1,1) value in 'Variance'.
Thank in advance
  2 件のコメント
Giovambattista Perciaccante
Giovambattista Perciaccante 2017 年 12 月 20 日
suppose your observed variable is called:
yt
specify the model for the conditional variance as GARCH(1,1)
varmdl = garch('GARCHLags', 1, 'ARCHLags', 1)
You haven't estimated anithing yet.
Then specify the model for the mean as ARMA(3,3). Inside the function ARIMA you call the model for the variance specifying the option 'Variance'
mdl = arima('ARLags',3, 'MALags',3,'Variance', varmdl)
Again you haven't estimated anything yet.
Finally using the function ESTIMATE you estimate all the coefficients in one go:
es = estimate(mdl, yt)
Manthos Vogiatzoglou
Manthos Vogiatzoglou 2017 年 12 月 24 日
Thanks a lot!
Merry Christmas

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeConditional Mean Models についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by