Discontinutiy of a function

3 ビュー (過去 30 日間)
Sergio Manzetti
Sergio Manzetti 2017 年 12 月 6 日
編集済み: Sergio Manzetti 2017 年 12 月 8 日
Hi, I have the following command:
if true
syms h g x C
h = 1
g = 4
C = 1/(2.*pi);
f = (C - (exp(-2.*g.*1i.*x./h)).*((g.*x)/2.*h.*1i));
disc = feval(symengine, 'discont', f, x);
However I get the result:
disc =
Empty sym: 1-by-0
Is there any way to get the discontinuity of this function in the real and imaginary plane?
  7 件のコメント
Torsten
Torsten 2017 年 12 月 8 日
編集済み: Torsten 2017 年 12 月 8 日
I don't understand why "Mathematica" treats this function as a mapping from R to R.
Regarding it as a mapping from R to C or from C to C, it is continous (and even has much higher smoothness properties).
Best wishes
Torsten.
Sergio Manzetti
Sergio Manzetti 2017 年 12 月 8 日
編集済み: Sergio Manzetti 2017 年 12 月 8 日
Thanks Torsten, so I can safely say that this function is continuous in R and C? You see, the integral of it and its hermitian counterpart in MATLAB gives single valued numbers only when using double precision, but when using regular precision I get a result composite of several functions. So I though that composite result was actually the integral over several fragments of the function across R, and thus not a continuous integral. (which one would expect if it was continuous in R)

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeFunctional Programming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by