Approximation not falls within the expected range
    3 ビュー (過去 30 日間)
  
       古いコメントを表示
    
Here's my script:
     n=1;  
while abs(pi-sum(4./((2*(1:n)-1).*(-1).^((1:n)+1))))>0.001
      n=n+1;    
end
fprintf('The approximation using Leibniz''s formula falls within 0,001 of pi when it equals to\n')
fprintf('%.9f with n equls %d\n\n',sum(4./((2*(1:n)-1).*(-1).^((1:n)+1))),n)
    end
    As shown, I try to make the result falls within 0.001 of pi, however, I get n=1000 an approximation equals 3.140592654. 
    My friend gets n=2002, so is mine wrong?
Thank you!
0 件のコメント
回答 (1 件)
  ag
      
 2024 年 12 月 4 日
        Hi Zhuoying,
I kindly suggest you to refer the following MathWorks file exchange page, which demonstrates implementation of the Leibniz formula: Approximation of Pi - https://www.mathworks.com/matlabcentral/fileexchange/102659-approximation-of-pi-leibniz-formula 
You can find the code on the "Functions" tab.
Hope this helps!
0 件のコメント
参考
カテゴリ
				Help Center および File Exchange で Loops and Conditional Statements についてさらに検索
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

