Why does hilbert tranformer give a phase-shifted but amplitude-reduced signal?

6 ビュー (過去 30 日間)
Yuzhen Lu
Yuzhen Lu 2017 年 11 月 10 日
コメント済み: 2022 年 12 月 12 日
I have performed hilbert transform by using a FIR hilbert filter rather than the matlab built-in hilbert function. An example code is as follows:
fx = 10;
t = linspace(0,1,512);
x = 0.5*cos(2*pi*fx*t); %sampled signal
h = firpm(26,[0.1 0.8],[1 1],'h'); % hilbert filter
xh = conv(x,h,'same'); %hilbert transform of x
figure;
plot(t, [x;xh]); legend('Original','Transformed');
The resulting figure is given as follows:
How to address the problem to obtain the result equivalent to that by using hilbert function ?

採用された回答

Honglei Chen
Honglei Chen 2017 年 11 月 13 日
The phase shift is expected so I assume you are talking about the amplitude? This is because the filter is not ideal. If you do a
fvtool(h)
You can see that the magnitude response is not unity when the frequency is close to DC or Nyquest. In your case, the signal frequency is 10 and the sampling rate is 512, so that is close to DC so you see the attenuation. if you change your sampling rate to, say, 128, then the result would be similar to what you get from hilbert.
HTH
  10 件のコメント
Yuzhen Lu
Yuzhen Lu 2017 年 11 月 15 日
Thank you all the same!!
叶
2022 年 12 月 12 日
Do you have any idea to solve this problem?I mean if signal amplitude decreased,how can I get the normal ampliude?what should I do ?

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeHilbert and Walsh-Hadamard Transforms についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by