Consistently generating same random sequence with for and parfor loop

12 ビュー (過去 30 日間)
sulav duwal
sulav duwal 2017 年 10 月 30 日
編集済み: Robert 2017 年 11 月 6 日
Dear all,
I encountered a problem, when I was running monte-carlo simulation. In order to speed up the simulation, I decided to change 'for' loop to 'parfor'. In order to debug and to later check the details of trajectory, I fixed the seed for random number generator within the loop. To my surprise, though the seeds for random number generator in 'for' and 'parfor' loop are same, the random number sequence are completely different. This creates a problem, since I cannot check the trajectories in 'parfor'.
% sample code with 'for' loop
rng(5)
seedForSimulation = randi(100,1,10);
randomNrs = NaN(1,10);
Seeds = NaN(1,10);
for i = 1:10
rng(SeedForSimulation(1,i));
Seeds(i) = SeedForSimulation(1,i);
randomNrs(i) = randi(10);
end
display(Seeds)
display(randomNrs)
The result that I get is :
Seeds = 23 88 21 92 49 62 77 52 30 19
randomNrs = 6 7 1 9 4 1 10 9 7 1
Whereas the same code with 'parfor'
% code
rng(5)
seedForSimulation = randi(100,1,10);
randomNrs = NaN(1,10);
Seeds = NaN(1,10);
parfor i = 1:10
rng(SeedForSimulation(1,i));
Seeds(i) = SeedForSimulation(1,i);
randomNrs(i) = randi(10);
end
display(Seeds)
display(randomNrs)
The result that I get :
Seeds = 23 88 21 92 49 62 77 52 30 19
randomNrs = 5 4 9 5 4 4 10 7 8 4
Though the seeds are same within 'for' and 'parfor', I get different random numbers. Can someone explain me what is Matlab doing ? How can I circumvent the problem.

採用された回答

Robert
Robert 2017 年 10 月 30 日
編集済み: Robert 2017 年 10 月 30 日
You can produce the same random numbers in a parfor loop if you explicitly set the random number generator type to be the same in the for and parfor loops.
You can do this when you set the seed or before the loop.
parfor i = 1:10
rng(seedForSimulation(1, i), 'twister');
Seeds(1, i) = seedForSimulation(1, i);
randomNrs(1, i) = randi(10);
end
This will return the exact same result if you replace parfor with for. You could also use:
spmd % run once on each parallel worker
rng(0, 'twister')
end
parfor i = 1:10
rng(seedForSimulation(1, i)); % no need to specify again
Seeds(1, i) = seedForSimulation(1, i);
randomNrs(1, i) = randi(10);
end
This will also return the same result as would the for loop.
  5 件のコメント
Robert
Robert 2017 年 10 月 30 日
編集済み: Robert 2017 年 10 月 30 日
My new test code
rng default
seedForSimulation = randi(10,1,10);
rng_source = 'twister'; % or 'combRecursive' or any other
% not needed if using 'twister' since that is default in base workspace
rng(0, rng_source)
% not needed if 'combRecursive' since that is default for parallel workers
spmd
rng(0, rng_source)
end
randomNrs = NaN(2,10);
Seeds = NaN(2,10);
for i = 1:10
rng(seedForSimulation(1,i));
Seeds(1, i) = seedForSimulation(1,i);
randomNrs(1, i) = randi(10);
end
parfor i = 1:10
rng(seedForSimulation(1,i));
Seeds(2, i) = seedForSimulation(1,i);
randomNrs(2, i) = randi(10);
end
display(Seeds)
display(randomNrs)
whose output is
Seeds =
9 10 2 10 7 1 3 6 10 10
9 10 2 10 7 1 3 6 10 10
randomNrs =
1 8 5 8 1 5 6 9 8 8
1 8 5 8 1 5 6 9 8 8
sulav duwal
sulav duwal 2017 年 10 月 30 日
Thanks Robert !!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeParallel for-Loops (parfor) についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by