How can I solve the equation of curvature on PDE Toolbox?
1 回表示 (過去 30 日間)
古いコメントを表示
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)
0 件のコメント
回答 (1 件)
Precise Simulation
2017 年 10 月 26 日
編集済み: Precise Simulation
2017 年 10 月 29 日
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
2 件のコメント
Precise Simulation
2017 年 10 月 31 日
Yes, if your function 'f' is labelled 'u' in the pde implementation.
参考
カテゴリ
Help Center および File Exchange で Geometry and Mesh についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!