How can I solve the equation of curvature on PDE Toolbox?

1 回表示 (過去 30 日間)
Sarojeet Deb
Sarojeet Deb 2017 年 10 月 25 日
コメント済み: Precise Simulation 2017 年 10 月 31 日
The equation is ∇n̂=2*curvature, Curvature is a constant
n̂ = ∇f/∥∇f∥ (Unit normal)
Here f is f(x,y)
I made the geometry in PDE Toolbox, meshed it and inputted the values in PDE Toolbox. But I am unable to input ∥∇f∥. I want to be ||∇f||= sqrt(x^2+y^2+u^2)

回答 (1 件)

Precise Simulation
Precise Simulation 2017 年 10 月 26 日
編集済み: Precise Simulation 2017 年 10 月 29 日
∥∇f∥ should typically be sqrt(fx^2+fy^2+eps) where eps is a small constant to avoid divisions by zeros (since ∥∇f∥ is in the denominator). As this look like a Hamilton-Jacobi distance function problem another approach would be to transform the equation to a time dependent one, which should be somewhat easier to solve.
  2 件のコメント
Sarojeet Deb
Sarojeet Deb 2017 年 10 月 30 日
Shouldn't it be sqrt(ux^2+uy^2+eps) instead?
Precise Simulation
Precise Simulation 2017 年 10 月 31 日
Yes, if your function 'f' is labelled 'u' in the pde implementation.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeGeometry and Mesh についてさらに検索

タグ

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by