Is it possible to set up multinomial logistic regression with multiple ordinal predictors?
3 ビュー (過去 30 日間)
古いコメントを表示
I am trying to generate a regression model that takes in 9 ordinal inputs(X) and returns 1 ordinal output (Y).
If I treat my X matrix of predictors like they are continuous (all ranging in integer values from 0 to 3, some only from 0 to 2), the model has relatively large coefficients (e.g. -1.68e15), or it just errors out with the following output:
Index exceeds matrix dimensions.
Error in mnrfit>ordinalFit (line 380)
pi = [gam(:,1) diffgam 1-gam(:,k-1)];
Error in mnrfit (line 206)
ordinalFit(x,z,m,pi,flink,ilink,dlink,n,k,p,pstar,parallel);
Error in GroomingOntomFLS_multiNomOrdRegress (line 51)
val = mnrfit( dataMatrix, responseVec, 'model', 'ordinal');
Each column of my `dataMatrix` variable is a separate, ordinal predictor. Is it possible to define them explicitly as ordinal variables?
0 件のコメント
回答 (1 件)
Corey Silva
2017 年 10 月 24 日
This definitely should be possible but hard without seeing your inputs. I think the following example should help you out: https://www.mathworks.com/help/stats/mnrfit.html#btpyj65
1 件のコメント
Benjamin
2024 年 2 月 19 日
Unfortunately, this works only with an ordinal response, not with ordinal predictors.
参考
カテゴリ
Help Center および File Exchange で Gaussian Process Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!