# How to find volume under fitted data?

46 ビュー (過去 30 日間)
Steven 2017 年 9 月 28 日
コメント済み: Steven 2017 年 9 月 29 日
I have a set of data, fitted by polynomial of 8th order. I want to find the volume under this surface (due to rotation around y axis for example). I am not sure how to do it. Should I use dblquad or trapz? Since dblquad needs function handle and I do not have the function, just the interpolated data (I also can not use interp2 (as suggested in some answers), because it uses linear interpolation. Any idea how I can find the volume?
Thank you!
##### 3 件のコメント表示非表示 2 件の古いコメント
KSSV 2017 年 9 月 28 日

サインインしてコメントする。

### 採用された回答

Teja Muppirala 2017 年 9 月 28 日

If you have a function y = f(r), which it sounds like you do since you have a polynomial, then you can use integral.
y = @(r) 1-r; % y can be any arbitrary function of r. Put the function for your curve here (POLYVAL?).
a = 0; % Some limits of integration r = a to b
b = 1;
% Volume under surface of rotation:
vol = 2*pi*integral(@(r) y(r) .* r, a, b) % Put in the extra ".*r" for polar coords.
Here I used y = 1-r, so it is a cone, and I can verify that the answer I got (vol=1.047) was indeed equal to the analytical answer for the volume of a cone with unit height and radius (pi/3).
If you don't have a function, but just some discrete set of values r and y, then you can use INTERP1 along with INTEGRAL.
r = [ 0 0.2 0.4 0.6 0.8 1.0 ]; % Again, just use a unit cone for testing purposes
y = [ 1 0.8 0.6 0.4 0.2 0 ];
Yfun = @(p) interp1(r, y, p);
vol = 2*pi*integral(@(r) Yfun(r).*r, 0, 1) % Again, you'll get 1.0472
##### 8 件のコメント表示非表示 7 件の古いコメント
Steven 2017 年 9 月 29 日
Thanks Torsten

サインインしてコメントする。

### カテゴリ

Find more on Numerical Integration and Differentiation in Help Center and File Exchange

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by