How to integrate function along circle on sphere?
4 ビュー (過去 30 日間)
古いコメントを表示
I need to calculate the mean value of a function along a circle on the surface of a sphere of radius R. The circle is given as the intersection of the sphere and the positive half of a cone of opening half-angle alpha, the axis of which points along (sin A*cos B, sin A*sin B, cos A). The function is given as a function of spherical coordinates f(theta,phi). I have solved the general equation for the intersection of sphere and cone in Cartesian coordinates, so for the points on the circle I know y and z as functions of x and I know the range of x. In other words, I know the x,y,z coordinates of the points on the circle. However, how should I now find the integral of the function over these points? I can't just calculate the function at many points and take the mean as the points won't be spaced evenly if I let x range over the necessary interval. Should I replace theta,phi by their expression in terms of x,y,z and then express y,z as functions of x and integrate with respect to x using something like integral()?
2 件のコメント
John D'Errico
2017 年 8 月 20 日
So, you cannot represent the curve parametrically in terms of theta? (From what you have said, you can.) Why cannot you just integrate over this parameter?
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Surface and Mesh Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!