The generalized Nyquist stability criterion

66 ビュー (過去 30 日間)
Khaled Abojlala
Khaled Abojlala 2017 年 8 月 16 日
コメント済み: Mohamed Belkhayat 2026 年 2 月 7 日 2:59
Hi I am trying to plot the Nyquist plot of MIMO system. any help please

採用された回答

Mohamed Belkhayat
Mohamed Belkhayat 2017 年 10 月 30 日
Once you have a MIMO matrix transfer function you can generate the plot by finding the eigenvalues of the matrix as a function of frequency. A 2x2 MIMO matrix transfer function will have 2 eigenvalues at every frequency point. The imaginary vs. the real part of the two eigenvalues will yield two loci that should always connect. This is the generalized Nyquist. I include a sample code for a textbook example in Multivariable Feedback Design by Maciejowski. Example 2.7. This example is limited to 2x2 but can be extended easily to higher dimensions.
  2 件のコメント
Khaled Abojlala
Khaled Abojlala 2017 年 10 月 31 日
Thanks, prof. this is very helpful
Mohamed Belkhayat
Mohamed Belkhayat 2026 年 2 月 7 日 2:59
Note that the 2017 file only plotted one eigen value, which was an oversight. This updated version Gnyquist2 plots both eigen values as it should and it's a bit faster. Note that in some cases the eigenvalues need to be sorted to maintain the continuity of the eign-loci. Otherwise the eign-values will trade places and it shows as a jump in the plot.

サインインしてコメントする。

その他の回答 (1 件)

Mitul Saini
Mitul Saini 2018 年 5 月 12 日
Is it only applicable for square matrices?
  1 件のコメント
Andrea
Andrea 2025 年 3 月 11 日
編集済み: Andrea 2025 年 3 月 28 日
Yes but normally the open loop K*G(s) is always square for state and output feedback, also if G(s) is not.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLink-Level Simulation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by