Hyperbolic Functions series convergence issue

9 ビュー (過去 30 日間)
NILESH PANDEY
NILESH PANDEY 2017 年 6 月 18 日
コメント済み: NILESH PANDEY 2017 年 6 月 19 日
I'am trying to run a code which has attached with this i'am getting answer as NAN i think the reason behind this is because of term e in this it contains sinh terms as n increases sinh values increases but if i keep x=0 then also it is coming NAN if you see the equation as x=0 then e will be 2*B1*sin(k2*(di+dd-y))/di which i have written as uu in code now after convergence it comes to 1.002(Vbi) which is correct by physics
but again e term is coming NAN because of this phi is coming NAN same goes to x=L or any value of 0<x<L
see the code below
how this can be remove ?
  1 件のコメント
NILESH PANDEY
NILESH PANDEY 2017 年 6 月 19 日
編集済み: NILESH PANDEY 2017 年 6 月 19 日
is any thing missing in question? no one replied yet or problem is unsolvable ? also in code i have written x=0:1e-10;L this is a writing mistake i'am declaring x as a vector so x=0:1e-10:L is the right

サインインしてコメントする。

採用された回答

Walter Roberson
Walter Roberson 2017 年 6 月 19 日
You have
L=120e-9;
[...]
di=5e-9;
[...]
k2=(2*n-1)*pi/(2*di)
[...]
e=e+2*sin(k2*(di+dd-y))*(B1*sinh(k2*(L-x))+B2*sinh(k2*x))/(di*sinh(k2*L));
With di being 5E-9, 2*di is 1E-8, so k2 = 1E8 * (2*n-1) * pi . Multiply that by L = 1.2E-7 and you get 12 * (2*n-1) * pi . When you reach n = 10, that leads you to calculating sinh(12 * 19 * pi), which overflows to infinity. That happens on both the numerator and denominator, leading you to infinity / infinity, which is NaN. That NaN then pollutes the rest of the calculation.
By the time of the overflow, you are probably pretty safe making some approximations on the (B1*sinh(k2*(L-x))+B2*sinh(k2*x))/(di*sinh(k2*L)) . For example you could taylor it, and then get rid of the elements that are going to have no effect. For example,
exp((1199/25)*n*Pi-(1199/50)*Pi)+exp((24*n-12)*Pi)-exp((599/25)*n*Pi-(599/50)*Pi)-1
is completely dominated by the first term, so you can reduce the complexity of the taylored expression.
  1 件のコメント
NILESH PANDEY
NILESH PANDEY 2017 年 6 月 19 日
Thanks Sir, i like the idea i'll try this

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLogical についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by