# Understanding the equations behind the 'logistic' learner when using fitclinear

5 ビュー (過去 30 日間)
Brian Odegaard 2017 年 6 月 9 日
コメント済み: Ilya 2017 年 6 月 12 日
I recently performed two-class predictions using the "fitclinear" function in MATLAB, implementing the "logistic" learner.
In the description of the "learner" input argument, the documentation for fitclinear lists only a single equation for regression:
f(x) = Bx + b
This equation only applies to linear regression, and not the logistic learner option. Would it be possible to list/describe the equations that yield the predictions when using the logistic learner? The description of the loss function in this section is informative, but I would appreciate seeing an explicit description of the logistic function.

サインインしてコメントする。

### 採用された回答

Ilya 2017 年 6 月 9 日
If the linear classification model consists of logistic regression learners, then the software applies the 'logit' score transformation to the raw classification scores (see ScoreTransform).
Then click on ScoreTransform.
##### 2 件のコメント表示非表示 1 件の古いコメント
Ilya 2017 年 6 月 12 日
Use lasso regularization with a small step in the regularization parameter and record what features survive at what lambda. As you increase regularization, you will get less features. The order in which feature coefficients drop to zero determines the feature ranks. Something like this would do:
lambda = logspace(-8,2,100);
mdl = fitclinear(X,y,'Learner','logistic','Lambda','lambda','Regularization','lasso','Solver','sparsa');
You may need to adjust the range of lambda for your problem.

サインインしてコメントする。

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!