How can i do if i want to test the network created with new input ?
2 ビュー (過去 30 日間)
古いコメントを表示
Hi , i used the neural Network start (nnstart) for pattern recognition and i got this script
% Solve a Pattern Recognition Problem with a Neural Network
% Script generated by Neural Pattern Recognition app
% Created 29-May-2017 14:25:55
%
% This script assumes these variables are defined:
%
% inputepilepsie - input data.
% targetepilepsie - target data.
x = inputepilepsie;
t = targetepilepsie;
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainscg'; % Scaled conjugate gradient backpropagation.
% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
tind = vec2ind(t);
yind = vec2ind(y);
percentErrors = sum(tind ~= yind)/numel(tind);
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotconfusion(t,y)
%figure, plotroc(t,y)
I want to know how can i do if i want to test the network with new input ?
0 件のコメント
採用された回答
Greg Heath
2017 年 5 月 30 日
% Test the Network with new data
ynew = net(xnew);
enew = gsubtract(tnew,ynew);
performancenew = perform(net,tnew,ynew)
tindnew = vec2ind(tnew);
yindnew = vec2ind(ynew);
percentErrorsnew = sum(tindnew ~= yindnew)/numel(tindnew);
Hope this helps.
Thank you for formally accepting my answer
Greg
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Sequence and Numeric Feature Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!