How can I calculate the angle between two surfaces?
13 ビュー (過去 30 日間)
古いコメントを表示
I have two planes with 50x50 points and I want to find the angle between them. The first is a reference plane at z = 0 and the second is a measured surface sample (see graph). I can get matlab to display the surface normal using surfnorm but it doesn't seem to output that data anywhere.
Any help would be very appreciated!

0 件のコメント
採用された回答
Roger Stafford
2017 年 5 月 19 日
The command
[Nx,Ny,Nz] = surfnorm(Z)
will return surface normals to surface Z. See:
https://www.mathworks.com/help/matlab/ref/surfnorm.html
However these normals will change from point to point. You need the equation of the best fit plane to obtain a single over-all normal to your points. For a plane with equation
a*x+b*y+c*z+d = 0
its normal is the vector v = [a,b,c]. To make it of unit length do:
v = v/norm(v);
As I think you are aware, the angle between the normals to two planes is the same as the angle between those planes. The angle between two 3D vectors v1 and v2 is:
ang = atan2(norm(cross(v1,v2)),dot(v1,v2));
その他の回答 (1 件)
David Goodmanson
2017 年 5 月 18 日
編集済み: David Goodmanson
2017 年 5 月 18 日
Hi Tobias, You get the components of the unit normals with [nx ny nz] = surfnorm(x,y,z) so if you have two surfaces z1 and z2, then
[nx1 ny1 nz1] = surfnorm(x,y,z1); % each is 50 x 50 in your case
[nx2 ny2 nz2] = surfnorm(x,y,z2);
n1dotn2 = nx1.*nx2 + ny1.*ny2 + nz1.*nz2;
theta = acos(n1dotn2) % 50 x 50, in radians
In your case the lower surface is the xy plane with n2 = (0,0,1) so you could just use theta = acos(nz1)
2 件のコメント
David Goodmanson
2017 年 5 月 18 日
編集済み: David Goodmanson
2017 年 5 月 18 日
I see what you mean, see the edited answer above with details added.
参考
カテゴリ
Help Center および File Exchange で Surface and Mesh Plots についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!